Ликвидация бизнеса. Приказы. Оборудование для бизнеса. Бухгалтерия и кадры
Поиск по сайту

Роль и значение исследования операций в экономике. Исследование операций в экономике

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

хорошую работу на сайт">

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

1. Общие понятия и определения в и сследование операций

Следует усвоить основные понятия и определения исследования операций.

Операция -- любое управляемое мероприятие, направленное на достижение цели. Результат операции зависит от способа ее проведения, организации, иначе -- от выбора некоторых параметров. Всякий определенный выбор параметров называется решением. Оптимальными считают те решения, которые по тем или иным соображениям предпочтительнее других. Поэтому основной задачей исследования операций является предварительное количественное обоснование оптимальных решений.

Замечание 1

Следует обратить внимание на постановку проблемы: само принятие решений выходит за рамки исследования операций и относится к компетенции ответственного лица или группы лиц, которые могут учитывать и другие соображения, отличные от математически обоснованных.

Замечание 2

Если в одних задачах исследования операций оптимальным является решение, при котором выбранный критерий эффективности принимает максимальное или минимальное значение, то в других задачах это вовсе не обязательно. Так, в задаче оптимальным можно считать, например, такое количество торговых точек и персонала в них, при котором среднее время обслуживания покупателей не превысит, например, 5 мин, а длина очереди в среднем в любой момент окажется не более 3 человек (1, стр. 10-11).

Эффективность производственно-коммерческой деятельности в значительной степени определяется качеством решений, повседневно принимаемым менеджерами разного уровня. В связи с этим большое значение приобретают задачи совершенствования процессов принятия решений, решить которые позволяет исследование операций. Термин «исследование операций» впервые начал использоваться в 1939-1940 гг. в военной области. К этому времени военная техника и ее управление принципиально усложнилось вследствие научно-технической революции. И поэтому к началу Второй мировой войны возникла острая необходимость проведения научных исследований в области эффективного использования новой военной техники, количественной оценки и оптимизации принимаемых командованием решений. В послевоенный период успехи новой научной дисциплины были востребованы в мирных областях: в промышленности, предпринимательской и коммерческой деятельности, в государственных учреждениях, в учебных заведениях.

Исследование операций - это методология применения математических количественных методов для обоснования решений задач во всех областях целенаправленной человеческой деятельности. Методы и модели исследования операций позволяют получить решения, наилучшим образом отвечающие целям организации.

Исследование операций -- это наука, занимающаяся разработкой и практическим применением методов наиболее эффективного (или оптимального) управления организационными системами.

Основной постулат исследования операций состоит в следующем: оптимальным решением (управлением) является такой набор значений переменных, при котором достигается оптимальное (максимальное или минимальное) значение критерия эффективности (целевой функции) операции и соблюдаются заданные ограничения.

Предметом исследования операций являются задачи принятия оптимальных решений в системе с управлением на основе оценки эффективности ее функционирования. Характерными понятиями исследования операций являются: модель, изменяемые переменные, ограничения, целевая функция.

Предмет исследования операций в реальности -- это системы организационного управления (организации), которые состоят из большого числа взаимодействующих между собой подразделений, причем интересы подразделений не всегда согласуются между собой и могут быть противоположными.

Целью исследования операций является количественное обоснование принимаемых решений по управлению организациями.

Решение, которое оказывается наиболее выгодным для всей организации, называется оптимальным, а решение, наиболее выгодное одному или нескольким подразделениям, будет субоптимальным.

В качестве примера типичной задачи организационного управления, где сталкиваются противоречивые интересы подразделений, рассмотрим задачу управления запасами предприятия.

Производственный отдел стремится выпускать как можно больше продукции при наименьших затратах. Поэтому он заинтересован в возможно более длительном и непрерывном производстве, т. е. в выпуске изделий большими партиями, ибо такое производство снижает затраты на переналадку оборудования, а следовательно и общие производственные затраты. Однако выпуск изделий большими партиями требует создания больших объемов запасов материалов, комплектующих изделий и т. д.

Отдел сбыта также заинтересован в больших запасах готовой продукции, чтобы удовлетворить любые запросы потребителя в любой момент времени. Заключая каждый контракт, отдел сбыта, стремясь продать как можно больше продукции, должен предлагать потребителю максимально широкую номенклатуру изделий. Вследствие этого между производственным отделом и отделом сбыта часто возникает конфликт по поводу номенклатуры изделий. При этом отдел сбыта настаивает на включении в план многих изделий, выпускаемых в небольших количествах даже тогда, когда они не приносят большой прибыли, а производственный отдел требует исключения таких изделий из номенклатуры продукции.

Финансовый отдел, стремясь минимизировать объем капитала, необходимого для функционирования предприятия, пытается уменьшить количество «связанных» оборотных средств. Поэтому он заинтересован в уменьшении запасов до минимума. Как видим, требования к размерам запасов у разных подразделений организации оказываются различными. Возникает вопрос, какая стратегия в отношении запасов будет наиболее благоприятной для всей организации. Это типичная задача организационного управления. Она связана с проблемой оптимизации функционирования системы в целом и затрагивает противоречивые интересы ее подразделений.

Основные особенности исследования операций:

1. Системный подход к анализу поставленной проблемы. Системный подход, или системный анализ, является основным методологическим принципом исследования операций, который состоит в следующем. Любая задача, какой бы частной она не казалась на первый взгляд, рассматривается с точки зрения ее влияния на критерий функционирования всей системы. Выше системный подход был проиллюстрирован на примере задачи управления запасами.

2. Для исследования операций характерно, что при решении каждой проблемы возникают все новые и новые задачи. Поэтому если сначала ставятся узкие, ограниченные цели, применение операционных методов не эффективно. Наибольший эффект может быть достигнут только при непрерывном исследовании, обеспечивающем преемственность в переходе от одной задачи к другой.

3. Одной из существенных особенностей исследования операций является стремление найти оптимальное решение поставленной задачи. Однако часто такое решение оказывается недостижимым из-за ограничений, накладываемых имеющимися в наличии ресурсами (денежные средства, машинное время) или уровнем современной науки. Например, для многих комбинаторных задач, в частности задач календарного планирования при числе станков п > 4, оптимальное решение при современном развитии математики оказывается возможным найти лишь простым перебором вариантов. Тогда приходится ограничиваться поиском «достаточно хорошего», или субоптимального решения. Поэтому исследование операций один из его создателей -- Т. Саати -- определил как «...искусство давать плохие ответы на те практические вопросы, на которые даются еще худшие ответы другими методами».

4. Особенность операционных исследований состоит в том, что они проводятся комплексно, по многим направлениям. Для проведения такого исследования создается операционная группа. В ее состав входят специалисты разных областей знания: инженеры, математики, экономисты, социологи, психологи. Задачей создания подобных операционных групп является комплексное исследование всего множества факторов, влияющих на решение проблемы, и использование идей и методов различных наук.

Каждое операционное исследование проходит последовательно следующие основные этапы:

1) описание задачи планирования,

2) построение математической модели,

3) нахождение решения,

4) проверка и корректировка модели,

5) реализация найденного решения на практике.

Описание задачи планирования:

· Задачи сетевого планирования и управления

рассматривают соотношения между сроками окончания крупного комплекса операций (работ) и моментами начала всех операций комплекса. Эти задачи состоят в нахождении минимальной продолжительности комплекса операций, оптимального соотношения величин стоимости и сроков их выполнения.

· Задачи массового обслуживания посвящены изучению и анализу систем обслуживания с очередями заявок или требований и состоят в определении показателей эффективности работы систем, их оптимальных характеристик, например в определении числа каналов обслуживания, времени обслуживания и т.п.

· Задачи управления запасами состоят в отыскании оптимальных значений уровня запасов (точек заказа) и размеров заказа. Особенность таких задач заключается в том, что с увеличением уровня запасов, с одной стороны, увеличиваются затраты на их хранение, но, с другой стороны, уменьшаются потери вследствие возможного дефицита запасаемого продукта.

· Задачи распределения ресурсов возникают при определенном наборе операций (работ), которые необходимо выполнять при ограниченных наличных ресурсах, и требуется найти оптимальные распределения ресурсов между операциями или состав операций.

· Задачи ремонта и замены оборудования актуальны в связи с износом и старением оборудования и необходимостью его замены с течением времени. Задачи сводятся к определению оптимальных сроков, числа профилактических ремонтов и проверок, а также моментов замены оборудования модернизированным.

· Задачи составления расписания (календарного планирования) состоят в определении оптимальной очередности выполнения операций (например, обработки деталей) на различных видах оборудования.

· Задачи планировки и размещения состоят в определении числа и места размещения новых объектов с учетом их взаимодействия с существующими объектами и между собой.

· Задачи выбора маршрута, или сетевые задачи, чаще всего встречаются при исследовании разнообразных задач на транспорте и в системе связи и состоят в определении наиболее экономичных маршрутов (1, стр.15).

2. Математическая форма моде ли

Моделирование - процесс исследования реальной системы, включающий построение модели, изучение ее свойств и перенос полученных сведений на моделируемую систему.

Модель - это некоторый материальный или абстрактный объект, находящийся в определенном объективном соответствии с исследуемым объектом, несущий о нем определенную информацию и способный его замещать на определенных этапах познания.

Математическое моделирование - процесс установления соответствия реальному объекту некоторого набора символов и выражений, например математических. Математические модели наиболее удобны для исследования и количественного анализа, позволяют не только получить решение для конкретного случая, но и определить влияние параметров системы на результат решения.

В создание современного математического аппарата и развитие многих направлений исследования операций большой вклад внесли российские ученые Л. В. Канторович, Н. П. Бусленко, Е. С. Вентцель, Н. Н. Воробьев, Н. Н. Моисеев, Д. Б. Юдин и многие другие. Особо следует отметить роль академика Л. В. Канторовича, который в 1939 г., занявшись планированием работы агрегатов фанерной фабрики, решил несколько задач: о наилучшей загрузке оборудования, раскрое материалов с наименьшими потерями, о распределении грузов по нескольким видам транспорта и др. Л. В. Канторович сформулировал новый класс условно-экстремальных задач и предложил универсальный метод их решения, положив начало новому направлению прикладной математики -- линейному программированию.

Значительный вклад в формирование и развитие исследования операций внесли зарубежные ученые Р. Акоф, Р. Беллман, Г. Данциг, Г. Кун, Дж. Нейман, Т. Саати, Р. Черч мен, А. Кофман и др. (1, стр. 17)

Этапы построения математических моделей :

Сущность построения математической модели состоит в том, что реальная система упрощается, схематизируется и описывается с помощью того или иного математического аппарата. Выделяют следующие основные этапы построения моделей.

Словесно описывается объект моделирования, цели его функционирования, среда, в которой он функционирует, выявляются отдельные элементы, возможные состояния, характеристики объекта и его элементов, определяются взаимосвязи между элементами, состояниями, характеристиками. Такое предварительное, приближенное представление объекта исследования называется концептуальной моделью. Этот этап является основой для последующего формального описания объекта.

2. Формализация операций

На основе содержательного описания определяется и анализируется исходное множество характеристик объекта, выделяются наиболее существенные из них. Затем выделяют управляемые и неуправляемые параметры, вводят символьные обозначения. Определяется система ограничений, строится целевая функция модели. Таким образом, происходит замена содержательного описания формальным (символьным, упорядоченным).

3. Проверка адекватности модели

Исходный вариант модели необходимо проверить по следующим аспектам:

1) все ли существенные параметры включены в модель?

2) нет ли в модели несущественных параметров?

3) правильно ли отражены связи между параметрами?

4) правильно ли определены ограничения на значения параметров?

Главным путем проверки адекватности модели исследуемому объекту выступает практика. После предварительной проверки приступают к реализации модели и проведению исследований. Полученные результаты моделирования подвергаются анализу на соответствие известным свойствам исследуемого объекта. По результатам проверки модели на адекватность принимается решение о возможности ее практического использования или о проведении корректировки.

4. Корректировка модели

На этом этапе уточняются имеющиеся сведения об объекте и все параметры построенной модели. Вносятся изменения в модель, и вновь выполняется оценка адекватности.

5. Оптимизация модели

Сущность оптимизации (улучшения) моделей состоит в их упрощении при заданном уровне адекватности. В основе оптимизации лежит возможность преобразования моделей из одной формы в другую. Основными показателями, по которым возможна оптимизация модели, являются время и затраты средств для проведения исследований и принятия решений с помощью модели.

Типы моделей:

В самом общем случае математическая модель задачи имеет вид:

max Z=F(x, y) (1.1)

при ограничениях

где Z=F(x, y) - целевая функция (показатель качества или эффективность) системы; х -- вектор управляемых переменных; у -- вектор неуправляемых переменных; Gi(x, y)-- функция потребления i-го ресурса; bi -- величина i-го ресурса (например, плановый фонд машинного времени группы токарных автоматов в станко-часах).

Определение 1. Любое решение системы ограничений задачи называется допустимым решением.

Определение 2. Допустимое решение, в котором целевая функция достигает своего максимума или минимума называется оптимальным решением задачи.

Для нахождения оптимального решения задачи в зависимости от вида и структуры целевой функции и ограничений используют те или иные методы теории оптимальных решений (методы математического программирования).

1. Линейное программирование, если F(x, y), -- линейны относительно переменных х.

2. Нелинейное программирование, если F(x, y) или -- нелинейны относительно переменных х.

3. Динамическое программирование, если целевая функция F(x, y) имеет специальную структуру, являясь аддитивной или мультипликативной функцией от переменных х.

F(x)=F(x1, x2, …, xn) -- аддитивная функция, если F(x1, x2, …, xn)=, и функция F(x1, x2, …, xn) -- мультипликативная функция, если F(x1, x2, …, xn)=.

4. Геометрическое программирование, если целевая функция F(x) и ограничения представляют собой функции вида

Математическая модель задачи в этом случае записывается в виде

при условиях

где I=(m0, m0+1, …, n0); I[k]= (mk, mk+1, …, nk); mk+1=nk+1; m0=1; n0=n.

5. Стохастическое программирование, когда вектор неуправляемых переменных у случаен.

В этом случае математическая модель задачи (1.1--1.2) будет иметь

maxMyE=My{f(x, y)}

при ограничениях

или вероятностных ограничениях

где My -- математическое ожидание по у; Р{gi (х)Ј b} -- вероятность того, что выполняется условие gi (х)Ј b.

6. Дискретное программирование, если на переменные xj наложено условие дискретности (например, целочисленности): xj -- целое, j=1,2,…,n1Јп.

7. Эвристическое программирование применяют для решения тех задач, в которых точный оптимум найти алгоритмическим путем невозможно из-за огромного числа вариантов. В таком случае отказываются от поиска оптимального решения и отыскивают достаточно хорошее (или удовлетворительное с точки зрения практики) решение. При этом пользуются специальными приемами -- эвристиками, позволяющими существенно сократить число просматриваемых вариантов. Эвристические методы также применяют, когда оптимальное решение в принципе может быть найдено (т.е. задача алгоритмически разрешима), однако для этого требуются объемы ресурсов, значительно превышающие наличные.

Из перечисленных выше методов математического программирования наиболее развитым и законченным является линейное программирование. В его рамки укладывается широкий круг задач исследования операций.

3. Линейное программирование

Несмотря на требование линейности целевой функции и ограничений, в рамки линейного программирования укладываются задачи распределения ресурсов, управления запасами, сетевого и календарного планирования, транспортные задачи, задачи теории расписаний и т. д.

Основные теоремы линейного программирования

В основе методов решения задач линейного программирования лежат следующие теоремы.

Основная теорема линейного программирования, устанавливающая место нахождения оптимальных решений.

Теорема 2.1. Если целевая функция принимает максимальное значение в некоторой точке допустимого множества R, то она принимает это значение в крайней точке R (вершине выпуклого многогранника). Если целевая функция принимает максимальное значение более, чем в одной крайней точке, то она принимает это же значение в любой их выпуклой комбинации.

Из теоремы 2.1 следует, что при отыскании оптимального решения достаточно просмотреть только крайние точки допустимого множества решений R.

Теорема 2.2. Каждое допустимое базисное решение соответствует крайней точке R.

Справедлива также следующая теорема, обратная к теореме 2.2. Теорема 2.3. Если -- крайняя точка допустимого множества решений R, то соответствующее решение x0 -- является допустимым базисным решением системы ограничений задачи линейного программирования.

Используя результаты теорем 2.1 и 2.2, можно сделать вывод, что для отыскания оптимального решения задачи линейного программирования достаточно перебрать лишь допустимые базисные решения. Этот вывод лежит в основе многих методов решения задач линейного программирования.

Определение оптимального ассортимента. Имеется р видов ресурсов в количествах а1, а2, ..., аi, ..., аp и q видов изделий. Задана матрица А=||aik||, где аik характеризует нормы расхода i-го ресурса на единицу k-го изделия (k = 1, 2, ..., q).

Эффективность выпуска единицы k-го изделия характеризуется показателем сi, удовлетворяющим условию линейности.

Определить план выпуска изделий (оптимальный ассортимент), при котором суммарный показатель эффективности принимает наибольшее значение.

4. Нелинейное программирование

В данной главе описываются оптимизационные задачи нелинейного программирования (НЛП), математические модели которых содержат нелинейные зависимости от переменных. Источники нелинейности относятся в основном к одной из двух категорий:

1) реально существующие и эмпирически наблюдаемые нелинейные соотношения, например: непропорциональные зависимости между объемом производства и затратами; между количеством используемого в производстве компонента и некоторыми показателями качества готовой продукции; между затратами сырья и физическими параметрами (давление, температура и т.п.) соответствующего производственного процесса; между выручкой и объемом реализации и др.;

2) установленные (постулируемые) руководством правила поведения или задаваемые зависимости, например: формулы или правила расчета с потребителями энергии или других видов услуг; эвристические правила определения страховых уровней запаса продукции; гипотезы о характере вероятностного распределения рассматриваемых в модели случайных величин; различного рода договорные условия взаимодействия между партнерами по бизнесу и др.

Решать линейные задачи значительно проще, чем нелинейные, и если линейная модель обеспечивает адекватность реальным ситуациям, то ее и следует использовать. В практике экономического управления модели линейного программирования успешно применялись даже в условиях нелинейности. В одних случаях нелинейность была несущественной и ею можно было пренебречь, в других -- производилась линеаризация нелинейных соотношений или применялись специальные приемы, например строились так называемые линейные аппроксимационные модели, благодаря чему достигалась требуемая адекватность. Тем не менее имеется большое число ситуаций, где нелинейность является существенной и ее нужно учитывать в явном виде.

Основные понятия НЛП:

* целевую функция;

* ограничения;

* допустимый план;

* множество допустимых планов;

* модель нелинейного программирования;

* оптимальный план.

Необходимо уметь:

* определять, является ли функция выпуклой;

* строить функцию Лагранжа задачи НЛП;

* проверять оптимальность полученных решений.

Модели НЛП

В общем виде задача НЛП описывается с помощью следующей модели нелинейного программирования:

исследование операция моделирование математический

где х = (x1, х2, ..., хn) -- вектор переменных задачи.

Задача (1)--(3) называется задачей нелинейного программирования в стандартной форме на максимум.

Может быть сформулирована также задача НЛП на минимум.

Вектор х = (x1, х2, ..., хn), компоненты хj которого удовлетворяют ограничениям (2) и (3), называется допустимым решением или допустимым планом задачи НЛП.

Совокупность всех допустимых планов называется множеством допустимых планов.

Допустимое решение задачи НЛП, на котором целевая функция (1) достигает максимального значения, называется оптимальным решением задачи НЛП.

Возможное местонахождение максимального значения функции F(x) при наличии ограничений (2) и (3) определяется следующим общим принципом. Максимальное значение F(x), если оно существует, может достигаться в одной или более точках, которые могут принадлежать следующим множествам:

Внутренняя точка множества допустимых планов, в которой все первые частные производные

Точка границы множества допустимых планов};

Точка множества допустимых планов, в которой функция F(x) недифференцируема}.

В отличие от задач линейного программирования, любая из которых может быть решена симплекс-методом, не существует одного или нескольких алгоритмов, эффективных для решения любых нелинейных задач. Какой-то алгоритм может оказаться чрезвычайно эффективным для решения задач одного типа и неудачным для задач другого типа.

Эффективность алгоритма может даже существенно зависеть от постановки задачи, например от изменения масштабов измерения тех или иных переменных. Поэтому алгоритмы разрабатываются для каждого класса (типа) задач. Программы, ориентированные на решение определенного класса задач, как правило, не гарантируют правильность решения любых задач данного класса, и оптимальность решения рекомендуется проверять в каждом конкретном случае.

В экономических приложениях рассматриваются следующие классы задач НЛП.

На рисунке приводится классификация задач и методов нелинейного программирования.

Рисунок. Классификация задач и методов нелинейного программирования

Большинство существующих методов в нелинейном программировании можно разделить на два больших класса:

1. Прямые методы - методы непосредственного решения исходной задачи. Прямые методы порождают последовательность точек - решений, удовлетворяющих ограничениям, обеспечивающим монотонное убывание целевой функции.

2. Недостаток: трудно получить свойство глобальной сходимости.

3. Задачи с ограничениями в виде равенств.

4. Метод замены переменных (МЗП)

5. Двойственные методы - методы, использующие понятие двойственности. В этом случае легко получить глобальную сходимость.

6. Недостаток: не дают решения исходной задачи в ходе решения - оно реализуемо лишь в конце итерационного процесса.

o Метод множителей Лагранжа (ММЛ)

o Методы штрафов

o Метод множителей

o Методы линеаризации для задач условной оптимизации

o Алгоритм Франка-Вульфа

o Метод допустимых направлений Зойтендейка

o Метод условного градиента

o Метод проекции градиента

o Сепарабельное программирование.

o Квадратичное программирование

1. Оптимизация нелинейной функции с ограничениями на неотрицательность значений переменных:

где х = (х1, х2,..., хn) -- вектор переменных задачи.

Пусть F(x) -- дифференцируемая функция.

Необходимые условия того, что в точке х0 достигается максимум функции F(x):

Это означает, что:

Если F(x) вогнутая функция (для задачи минимизации -- выпуклая), то эти условия являются также достаточными.

Функция F(x) с числовыми значениями, определенная на выпуклом множестве точек К, называется вогнутой, если для любой пары точек х1, х2 и для всех чисел l, 0 Ј l Ј 1, выполняется неравенство

то функция F(x) называется выпуклой. Если имеют место строгие неравенства, то говорят, что функция строго вогнута или строго выпукла.

Данное определение вогнутости (выпуклости) годится для любого типа функции. Практически, однако, применять его трудно.

Для дважды дифференцируемой функции F(x) имеет место следующий критерий. Дифференцируемая функция F(x) строго вогнута в некоторой окрестности точки если выполняются следующие условия:

т.е. если знаки этих определителей чередуются указанным образом.

Здесь -- частная производная второго порядка, вычисленная в точке х0.

Матрица размера п ґ п, составленная из элементов, называется матрицей Хессе (Hesse). По значениям ее главных миноров можно судить о выпуклости или вогнутости функции. Функция F(x) строго выпукла в малой окрестности точки х0, если все главные миноры ее матрицы Хессе строго положительны. Если имеют место нестрогие неравенства (і), то функция в окрестности точки х0 выпукла. Если при этом главные миноры матрицы Хессе от х не зависят, то функция всюду (строго) выпукла.

Весьма распространены относящиеся к данному типу модели квадратичного программирования, в которых целевая функция F(x) является квадратичной функцией переменных х1, х2, ..., хn. Существует большое число алгоритмов решения такого типа задач, в которых функция F(x) вогнутая (для задач минимизации -- выпуклая).

2. Модели выпуклого программирования. К такого рода моделям относятся задачи НЛП (1)--(3), в которых F(x) -- вогнутая (выпуклая) функция, a gi(x) -- выпуклые функции. При данных условиях локальный максимум (минимум) является и глобальным.

Пусть F(x) и gi(x), i= 1,..., т, -- дифференцируемые функции.

Необходимые и достаточные условия оптимальности решения -- выполнение условий Куна -- Таккера.

Рассмотрим задачу НЛП (1)--(3) и функцию Лагранжа

Условия Куна -- Таккера оптимальности решения х0 для задачи максимизации F(x) имеют вид

где -- частная производная функции Лагранжа по переменной хj при х = х0 и l = l0. Пусть максимальное значение F(x) равно F(x0) = F0. Числа связаны с F0 следующими соотношениями:

Из этих соотношений видно, что числа характеризуют реакцию значения F0 на изменение значения соответствующего bi. Например, если < 0, то при уменьшении bi (в пределах устойчивости) значение F0 увеличится, а = 0 указывает на несущественность соответствующего ограничения gi(х) Ј bi, которое может быть без ущерба для оптимального решения из системы ограничений исключено.

3. Сепарабельное программирование. Специальный случай выпуклого программирования при условии, что F(x) и все gi(х) -- сепарабельные функции, т.е.

Задачи данного вида сводятся к задачам линейного программирования.

4. Дробно-нелинейное программирование. Максимизировать (минимизировать) функцию

F(x) = F1(x)/F2(x).

В частном случае, когда в числителе и знаменателе -- линейные функции (так называемая задача дробно-линейного программирования), задача сводится к линейной.

5. Невыпуклое программирование. Функция F(x) и (или) какие-либо gi(x) не выпуклы. Надежных методов решения задач такого типа пока не существует (3, стр. 74-77)

Как пример, рассмотрим нелинейную модель оптимального распределения ресурсов:

Описание задачи распределения ресурсов

Задача распределения ресурсов рассматривается для n предприятий. Центр осуществляет управление этими промышленными предприятиями, выпускающими однотипную продукцию. Обозначим через Рi объем продукции, выпускаемой предприятием i, i=1,. ..,n. Результат функционирования центра определяется результатами функционирования отдельных производителей, т.к. центр сам не производит продукции.

Считаем, что величина продукции, произведенной i-м предприятием, определяется объемом фондов Fi и количеством рабочей силы Li, согласие производственной функции Кобба- Дугласа:

Где i=1,..,n (4)

В выражении (4) di и ki характеристики предприятия i (i=1,.. .,n), удовлетворяющие условиям: di > 0 , i=1,...,n.

Пусть wi - ставка заработной платы на предприятии i. Тогда доля дохода предприятия i в общей сумме прибыли объединения определится так:

Gi =ci*Pi-wi*Li , i=1,. . .,n.

Если величина фондов предприятия фиксирована, то объем продукции Pi однозначно определяется количеством рабочей силы.

Центр влияет на работу предприятий распределением дополнительного ресурса, который полностью находиться в его распоряжении. Если предприятие i получит дополнительный ресурс в количестве Vi, то оно сможет произвести продукцию в объеме

Задача центра состоит в распределении имеющегося в его распоряжении ресурса В, т. е. в определении оптимальных значений величин Vi, i =1,...,n, обеспечивающих максимум суммарной прибыли объединения в целом.

Математическая форма модели

В данной задаче считаем, что используется схема централизованного планирования, в рамках которой центр рассчитывает оптимальное распределение ресурсов, оптимальные величины рабочей силы при заданных параметрах модели. Конкретно центр изменяет Vi и Li, i = 1,...,n, из условий:

z = max (G1 + G2 + ,..., + Gn) (6)

Vi, Vimin, Li 0,i=1,...,n (7)

Анализ чувствительности модели как способ восстановления финансового равновесия.

Основой сохранения и восстановления финансового равновесия предприятия и снижения уровня риска является анализ чувствительности предложенной модели. Анализ чувствительности состоит из следующих этапов:

1. Выбор ключевого показателя, т.е. такого параметра, относительно которого и рассчитывается чувствительность проекта (чаще всего это чистый приведенный доход и внутренняя норма доходности).

2. Выбор факторов, которые влияют на эти показатели.

3. Расчет значений ключевых показателей на разных этапах реализации проекта (поиск, проектирование, строительство, эксплуатация).

Чем выше чувствительность показателей к факторам внешней среды, тем более рискованным является проект. Для каждого показателя определяется чувствительность каждого момента времени или отрезка времени. Определяется эффективность проекта.

Часто во время анализа чувствительности определяется точка безубыточности проекта, т.е. определяется тот объем выпуска продукции, при котором предприятие выходит из зоны убытка.

Анализ чувствительности проекта разрешает специалистам учитывать риск и неопределенность. Например, если цена продукции оказалась критической, то возможно усилить программу маркетинга или снизить стоимость проекта. Если критическим окажется объем выпущенной продукции, то необходимо повысить квалификацию рабочих, уделить внимание обучению персонала, менеджерам и другим факторам повышения производительности.

Недостатки метода анализа чувствительности:

1. Метод не рассчитан на все случайное и возможное обстоятельства.

2. Метод не уточняет вероятность реализации альтернативных проектов.

Анализ чувствительности оптимального решения

Анализ чувствительности выполняется уже после получения оптимального решения задачи линейного программирования (ЛП). Его цель -- определить, приведет ли изменение коэффициентов исходной задачи к изменению текущего оптимального решения, и если да, то, как эффективно найти новое оптимальное решение (если оно существует).

В общем случае изменение коэффициентов исходной задачи может привести к одной из следующих четырех ситуаций.

1. Текущее базисное решение остается неизменным.

2. Текущее решение становится недопустимым.

3. Текущее решение становится неоптимальным.

4. Текущее решение становится неоптимальным и недопустимым.

Во второй ситуации можно использовать двойственный симплекс-метод для восстановления допустимости решения. В третьей ситуации мы используем прямой симплекс-метод для получения нового оптимального решения. В четвертой для получения нового оптимального и допустимого решения следует воспользоваться как прямым, так и двойственным симплекс-методом.

Список литературы

1. «Исследование операций в экономике» учебное пособие для Вузов, 3-е издание, переработанное и дополненное, под ред. Н.Ш.Кремера, М.: Юрайт, 2013.

2. T.В. Алесинская « Основы логистики. Общие вопросы логистического управления» .Учебное пособие. Таганрог: Изд-во ТРТУ, 2005.

3. Афанасьев М.Ю., Суворов Б.П. Исследование операций в экономике: модели, задачи, решения. Учебное пособие, М, Инфра-М, 2003 г.

4. Филлипс Д., Гарсиа-Диас А. Методы анализа сетей. -М.: Мир,1984.

5. Грешилов А.А. Как принять наилучшее решение в реальных условиях. - М.: Радио и связь, 1991.

6. Попов Ю.Д. Линейное и нелинейное программирование. Учебное пособие. - Киев, 1988.

7. Зайченко Ю.П. Исследование операций. Учебное пособие для студентов вузов. - Киев: Вища школа. Головное издательство, 1979

8. Таха Х.. Введение в исследование операций: в 2-х книгах. - М.: Мир, 1985.

9. Акоф Р., Сасиени М. Основы исследования операций. - М.: Мир, 1997.

10. Акулич И.Л. Математическое программирование в примерах и задачах. - М.: Высшая школа, 1986.

11. Данко. Высшая математика в примерах и задачах.

12. Алексеев В. М., Голеев В. М., Тихомиров В. М. Сборник задач по оптимизации: Теория, примеры, задачи. М., Наука, 1984.

13. Берман Г. Н. Сборник задач по курсу математического анализа. М., Наука, 1985.

14. Ильин В.А.., Позняк Э.Г. Линейная алгебра. М., Наука, 1983.

15. Ильин В.А.., Позняк Э.Г. Основы математического анализа. М., Наука, Ч.1,2, 1980.

16. Клетеник Д..В. Сборник задач по аналитической геометрии. М., Наука, 1984.

17. Кудрявцев Л.Д.. Курс математического анализа. М., Высш. шк., Т. 1-3, 1988.

18. Кудрявцев Л.Д.. Краткий курс математического анализа. М., Наука, 1989.

19. Кудрявцев Л.Д.., Кутасов А..Д., Чехлов В.И., Шабунин М.И. Сборник задач по математическому анализу. Предел. Непрерывность. Дифференцируемость. М., Наука, 1984.

20. Кремер Н. Ш., Путко Б. А.., Тришин И.М., Фридман М. Ф. Высшая математика для экономистов. М., Банки и биржи, ЮНИТИ, 1998.

21. Гмурман В.Е. Теория вероятностей и математическая статистика. Учебное пособие для вузов. М., Высш. шк., 1999.

22. Ниворожкина Л.И., Морозова З.А. Основы статистики с элементами теории вероятностей для экономистов. Руководство для решения задач. Ростов н/Д., Феникс., 1999.

23. Данко П.Е. Высшая математика в упражнениях и задачах. Ч.2. М., Высш. шк., 1997.

24. Чистяков В.П. Курс теории вероятностей. М., Наука., 1987.

25. Севастьянов Б. А. Курс теории вероятностей и математической статистики. М., Наука., 1982.

26. Севастьянов Б.А., Чистяков В.П., Зубков А.М. Сборник задач по теории вероятностей. М., Наука., 1980.

27. Вентцель Е.С Исследование операций. Задачи. Принципы. Методология, 1980.

28. Горелик В.А., Ушаков И.А. Исследование операций. - М.: Машиностроение, 1986.

29. Исследование операций/ Под редакцией М.А. Войтенко и Н.Ш. Кремера.-М.: Экономическое образование, 1992.

30. Карасев А.И., Аксютин З.М., Савельева Т.И. Математические методы и модели в планировании М.: Экономика, 1987.

31. Исследование операций / Н. Н. Писарук. Минск: БГУ, 2013.272 c.

Размещено на Allbest.ru

...

Подобные документы

    Графическое решение задач линейного программирования. Решение задач линейного программирования симплекс-методом. Возможности практического использования математического программирования и экономико-математических методов при решении экономических задач.

    курсовая работа , добавлен 02.10.2014

    Понятие и типы моделей. Этапы построения математической модели. Основы математического моделирования взаимосвязи экономических переменных. Определение параметров линейного однофакторного уравнения регрессии. Оптимизационные методы математики в экономике.

    реферат , добавлен 11.02.2011

    Изучение экономических приложений математических дисциплин для решения экономических задач: использование математических моделей в экономике и менеджменте. Примеры моделей линейного и динамического программирования как инструмента моделирования экономики.

    курсовая работа , добавлен 21.12.2010

    Основные понятия линейной алгебры и выпуклого анализа, применяемые в теории математического программирования. Характеристика графических методов решения задачи линейного программирования, сущность их геометрической интерпретации и основные этапы.

    курсовая работа , добавлен 17.02.2010

    Математическая формализация оптимизационной проблемы. Геометрическая интерпретация стандартной задачи линейного программирования, планирование товарооборота. Сущность и алгоритм симплекс-метода. Постановка транспортной задачи, последовательность решения.

    учебное пособие , добавлен 07.10.2014

    Теоретические основы экономико-математических методов. Этапы принятия решений. Классификация задач оптимизации. Задачи линейного, нелинейного, выпуклого, квадратичного, целочисленного, параметрического, динамического и стохастического программирования.

    курсовая работа , добавлен 07.05.2013

    Общая постановка задачи линейного программирования (ЛП). Приведение задачи ЛП к стандартной форме. Теоремы двойственности и их использование в задачах ЛП. Транспортная задача и её решение методом потенциалов. Интерполирование табличных функций.

    курсовая работа , добавлен 31.03.2014

    Цель работы: изучить и научиться применять на практике симплекс - метод для решения прямой и двойственной задачи линейного программирования. Математическая постановка задачи линейного программирования. Общий вид задачи линейного программирования.

    реферат , добавлен 28.12.2008

    Модель динамического программирования. Принцип оптимальности и уравнение Беллмана. Описание процесса моделирования и построения вычислительной схемы динамического программирования. Задача о минимизации затрат на строительство и эксплуатацию предприятий.

    дипломная работа , добавлен 06.08.2013

    Основные подходы к математическому моделированию систем, применение имитационных или эвристических моделей экономической системы. Использование графического метода решения задачи линейного программирования для оптимизации программы выпуска продукции.

КУРСОВОЙ ПРОЕКТ

Исследование операций в экономике

Введение

Графическое решение задач линейного программирования

Решение задач линейного программирования симплекс-методом

Транспортная задача

Задача о назначениях

Задача о ранце

Заключение

Литература

Введение

Успешная реализация достижений научно-технического прогресса в нашей стране тесным образом связана с использованием экономико-математических методов и средств вычислительной техники при решении задач из различных областей человеческой деятельности. Исключительно важное значение приобретает использование указанных методов и средств при решении экономических задач.

Управление и планирование являются наиболее сложными функциями администрации предприятий, менеджеров, руководителей хозяйственных органов и штабов различного уровня. Характер управления и планирования определяет путь достижения цели и оказывает существенное влияние на качество решения поставленной задачи. В современных условиях повышается ответственность за качество принимаемых управленческих решений. Несколько неудачных управленческих решений и предприятие вступает в стадию банкротства.

В настоящее время существует две группы методов принятия управленческих решений:

) логический (когда решение принимается на основании опыта, интуиции и других личностных качеств лица, принимающего решение);

) формально-логический или формализованный (когда решение принимается на основе изучения предварительно-построенной модели). При этом появляется возможность оценить последствия каждого из вариантов и выбрать наилучший по некоторому критерию. В этой группе методов важную роль играют экономико-математические модели.

Образ реальной действительности, в котором отражены характерные для изучаемого явления признаки или черты реального объекта (оригинала), именуют моделью, а сам процесс построения моделей называют моделированием.

Использование цифровых и знаковых символов позволяет создать категорию моделей, которая включает формально-логические и математические модели.

Любое управление в экономике связано с выработкой и принятием управленческих решений, воплощающихся в управленческие воздействия. Субъекты управления стремятся определить последствия определённого решения. Прежде чем осуществлять управляющее воздействие, принимать окончательное решение, желательно проверить его действенность, послед-ствия, результат. При этом фактически используются логические модели процессов управления, мысленные сценарии их протекания. Но возможности даже квалифицированного, опытного специалиста воспроизвести в своём мозгу картину поведения объекта управления под влиянием управляющих воздействий довольно ограничены. Приходится прибегать к помощи математических расчётов, дополняющих мысленные представления, иллюстрирующих ожидаемую картину управляемого процесса в виде цифр, кривых, графиков, таблиц. Использование математических методов при формировании представлений об экономических объектах и процессах в ходе экономического анализа, прогнозирования, планирования называют применением экономико-математических методов.

Наиболее распространённая форма, основной инструмент воплощения экономико-математических методов - это экономико-математическое моделирование. Математическое моделирование опирается на математическое описание моделируемого объекта (процесса) в виде формул, зависимостей с помощью математических символов, знаков.

Экономико-математическая модель представляет собой формализованное описание управляемого экономического объекта (процесса), включающее заранее заданные параметры, показатели и искомые неизвестные величины, характеризующие состояние объекта, его функционирование, объединённые между собой связями в виде математических зависимостей, соотношений, формул. Модель способна быть только аналогом моделируемой системы, отражающим основные, существенные свойства изучаемой управляемой системы, которые наиболее важны с позиций управления.

Благодаря моделированию субъект управления способен в ходе анализа иметь дело не с реальным объектом управления, а с его аналогом в виде модели. Это значительно расширяет возможности поиска лучших способов управления, не нарушая функционирования реального объекта управления в период выработки управленческих решений. Появляется возможность применить вычислительную технику, использовать компьютеры, для которых математический язык моделей является самым удобным. Благодаря компьютерам можно производить многовариантные модельные расчёты, что повышает шансы на отыскание лучших вариантов.

Для того чтобы принять обоснованное решение необходимо получить и обработать огромное количество информации. Ответственные управленческие решения зачастую связаны с судьбами людей, принимающих их, и с большими материальными ценностями. Но сейчас недостаточно указать путь, ведущий к достижению цели. Необходимо из всех возможных путей выбрать наиболее экономный, учитывающий особенности течения и развития управляемого процесса и наилучшим образом соответствующий поставленной задаче.

Процесс управления производственной системой представляет собой процесс принятия решений, что всегда связано с выбором из множества возможных решений, допускаемых обстоятельствами решаемой задачи, то есть имеется множественность имеющихся вариантов. Выбранное решение должно соответствовать некоторому критерию целесообразности. Этим объясняется связь задач принятия управленческих решений с методами теории оптимизации.

В процессе выработки решений приходится формализовать зависимость между отдельными элементами системы, применять математический аппарат, общие кибернетические принципы и закономерности, то есть использовать экономико-математические методы.

Известно, что экономический эффект от рациональных методов управления и планирования, применяемых в широких масштабах и на высоком уровне, способен в ряде случаев повысить эффект от существенного увеличения мощностей. Возникает потребность в новых математических методах, позволяющих анализировать ритм производства, взаимоотношения между людьми и между коллективами.

Математические машины, внедряемые в производство и управление и используемые в научно-исследовательской работе, создают огромные возможности для развития различных отраслей науки, для совершенствования методов планирования и автоматизации производства. Однако без строгих формулировок задач, без формально-математического описания процессов не может быть достигнут необходимый уровень использования техники. Возникают вопросы, связанные с формализацией физических, экономических, технических и других процессов. Формализация задачи - необходимый этап для перевода каждой прикладной экономической задачи на язык математических машин.

Для постановки задачи математического программирования необходимо сформулировать цель управления и указать ограничения на выбор параметров управления, обусловленные особенностями управляемого процесса. Задача математического программирования сводится к выбору системы параметров, обеспечивающей оптимальное (в заданном смысле) качество процесса управления в рамках сформулированных ограничений.

Всё вышесказанное доказывает необходимость применения экономико-математических методов и моделей в управлении для принятия обоснованных управленческих решений.

В данной курсовой работе даётся представление о возможностях практического использования математического программирования и экономико-математических методов при решении конкретных экономических задач.

.Графическое решение задач линейного программирования.

Решить графически задачу

4x1+x2 → max,

при следующих ограничениях:

x1+7x2≤140

x1+10x2≤150

x1+20x2≤100

Построим область допустимых решений, т.е. решим графически систему неравенств. Для этого построим каждую прямую и определим полуплоскости, заданные неравенствами (полуплоскости обозначены штрихом).

Пересечением полуплоскостей будет являться область, координаты точек которого удовлетворяют условию неравенствам системы ограничений задачи.

Обозначим границы области многоугольника решений.

Рассмотрим целевую функцию задачи F = 4x1+x2 → max.

Построим прямую, отвечающую значению функции F = 0: F = 4x1+x2 = 0. Будем двигать эту прямую параллельным образом. Поскольку нас интересует максимальное решение, поэтому двигаем прямую до последнего касания обозначенной области. На графике эта прямая обозначена пунктирной линией.

Область допустимых решений представляет собой многоугольник

Прямая F(x) = const пересекает область в точке A. Так как точка A получена в результате пересечения прямых (1) и (3), то ее координаты удовлетворяют уравнениям этих прямых:

x1+7x2=140

x1+20x2=100

Решив систему уравнений, получим: x1 = 5.7534, x2 = 3.5616

Откуда найдем максимальное значение целевой функции:

(X) = 4*5.7534 + 1*3.5616 = 26.5753

2. Решение задач линейного программирования симплекс - методом.

Решим прямую задачу линейного программирования симплексным методом, с использованием симплексной таблицы.

Определим максимальное значение целевой функции F(X) = 5x1 + 5x2 + 11x3+9 при следующих условиях-ограничений.

При вычислениях значение Fc = 9 временно не учитываем.

линейный программирование математический экономический

x1 + x2 + x3 + x4≤0

x1 + 5x2 + 3x3 + 2x4≤0

x1 + 5x2 + 10x3 + 15x4≤0

Для построения первого опорного плана систему неравенств приведем к системе уравнений путем введения дополнительных переменных (переход к канонической форме).

В 1-м неравенстве смысла (≤) вводим базисную переменную x5. В 2-м неравенстве смысла (≤) вводим базисную переменную x6. В 3-м неравенстве смысла (≤) вводим базисную переменную x7.

x1 + 1x2 + 1x3 + 1x4 + 1x5 + 0x6 + 0x7 = 0

x1 + 5x2 + 3x3 + 2x4 + 0x5 + 1x6 + 0x7 = 0

x1 + 5x2 + 10x3 + 15x4 + 0x5 + 0x6 + 1x7 = 0

Матрица коэффициентов A = a(ij) этой системы уравнений имеет вид:

11111007532010351015001

Базисные переменные это переменные, которые входят только в одно уравнение системы ограничений и притом с единичным коэффициентом.

Решим систему уравнений относительно базисных переменных: x5, x6, x7

Полагая, что свободные переменные равны 0, получим первый опорный план: X1 = (0,0,0,0,0,0,0)

Базисное решение называется допустимым, если оно неотрицательно.

БазисBx1x2x3x4x5x6x7x501111100x607532010x70351015001F(X0)0-5-5-110000

Переходим к основному алгоритму симплекс-метода.

Итерация №0.

Проверка критерия оптимальности.

Текущий опорный план неоптимален, так как в индексной строке находятся отрицательные коэффициенты.

Определение новой базисной переменной.

В качестве ведущего выберем столбец, соответствующий переменной x3, так как это наибольший коэффициент по модулю.

Определение новой свободной переменной.

Вычислим значения Di по строкам как частное от деления: bi / ai3

и из них выберем наименьшее:(0: 1, 0: 3, 0: 10) = 0

Следовательно, 1-ая строка является ведущей.

Разрешающий элемент равен (1) и находится на пересечении ведущего столбца и ведущей строки.

БазисBx1x2x3x4x5x6x7minx5011111000x6075320100x703510150010F(X1)0-5-5-1100000

Пересчет симплекс-таблицы.

Формируем следующую часть симплексной таблицы.

Вместо переменной x5 в план 1 войдет переменная x3.

Строка, соответствующая переменной x3 в плане 1, получена в результате деления всех элементов строки x5 плана 0 на разрешающий элемент РЭ=1

На месте разрешающего элемента в плане 1 получаем 1.

В остальных клетках столбца x3 плана 1 записываем нули.

Таким образом, в новом плане 1 заполнены строка x3 и столбец x3.

Все остальные элементы нового плана 1, включая элементы индексной строки, определяются по правилу прямоугольника.

Для этого выбираем из старого плана четыре числа, которые расположены в вершинах прямоугольника и всегда включают разрешающий элемент РЭ.

НЭ = СЭ - (А*В)/РЭ

СТЭ - элемент старого плана, РЭ - разрешающий элемент (1), А и В - элементы старого плана, образующие прямоугольник с элементами СТЭ и РЭ.

Представим расчет каждого элемента в виде таблицы:

Bx 1x 2x 3x 4x 5x 6x 70: 11: 11: 11: 11: 11: 10: 10: 10-(0 3):17-(1 3):15-(1 3):13-(1 3):12-(1 3):10-(1 3):11-(0 3):10-(0 3):10-(0 10):13-(1 10):15-(1 10):110-(1 10):115-(1 10):10-(1 10):10-(0 10):11-(0 10):10-(0 -11):1-5-(1 -11):1-5-(1 -11):1-11-(1 -11):10-(1 -11):10-(1 -11):10-(0 -11):10-(0 -11):1

Получаем новую симплекс-таблицу:

БазисBx1

МЕТОД - совокупность приемов и способов теоретического познания или практического освоения действительности. Например, в области познания существуют следующие методы: наблюдение, эксперимент, идеализация, аналогия, индукция, дедукция, анализ, синтез, формализация и пр.

Словарь терминов и понятий по обществознанию. Автор-составитель А.М. Лопухов. 7-е изд. переб. и доп. М., 2013, с. 216.

Научный метод

НАУЧНЫЙ МЕТОД (от др.-греч. μέθοδος - способ, путь познания). Выделяются два подхода (стратегический и тактический) к дефиниции научного метода: 1) метод как способ, средство достижения цели и задач исследования; 2) метод как система принципов, правил, приемов и процедур познания. Структура научного метода включает: методологические подходы и принципы; процедуры и операции, направленные на сбор, регистрацию, хранение, поиск, систематизацию и преобразование информации. Основу научного метода, по мнению большинства исследователей, составляют подходы и принципы (теория метода). Подход определяет основной путь решения исследовательской задачи, т. е. раскрывает стратегию исследования. В современной исторической науке используются различные подходы - эволюционный, системный, структурно-функциональный, модельный, цивилизационный, формационный и проч. Все методологические подходы связаны с определенными теориями познания...

Методы исторического исследования

МЕТОДЫ ИСТОРИЧЕСКОГО ИССЛЕДОВАНИЯ - 1) категория частнонаучных методов, используемых в исторической науке; 2) вспомогательная историческая дисциплина, объектом исследования которой выступают методы исторического исследования, их информационный потенциал, возможности и ограничения, методологические и методические вопросы реализации. В исторической науке при определении содержания методов исторического исследования выделяется два подхода: 1) акцент делается на их тесную связь с изучением исторических источников: под историческими методами подразумеваются приемы критики исторических источников, прежде всего письменных...

Классификации метод

КЛАССИФИКАЦИИ МЕТОД - 1) процесс отнесения (распределения) классифицируемого объекта к определенной группе (разделу) на основе нахождения у объекта заданного признака; 2) система классов, предназначенных для характеристики качественно однородной совокупности предметов (понятий). В исторической науке метод классификации используется для систематизации и анализа исторических явлений (источников, массовых объектов) и представляет собой последовательность логических процедур: определение объекта классификации; обоснование принципа (основания) деления; выделение разделов классификации. Классификация должна отвечать требованиям однозначности, всеобщности и единства основания...

Вспомогательные методы исторического исследования

ВСПОМОГАТЕЛЬНЫЕ МЕТОДЫ ИСТОРИЧЕСКОГО ИССЛЕДОВАНИЯ - методы исторического исследования, разработанные в рамках вспомогательных исторических дисциплин, которые выступают в качестве самостоятельных отраслей исторической науки, обладающих своим объектом и предметом исследования и ориентированных на изучение определенных видов исторических источников или их свойств.

Метод (Шапарь, 2009)

МЕТОД (метод исследования) (греч. methodos) - способ организации деятельности, обосновывающий нормативные приемы осуществления научного исследования. Путь исследования, вытекающий из общих теоретических представлений о сущности изучаемого объекта. Сюда относятся и самые общие принципы, лежащие в основе познания и практики, и вполне конкретные приемы обращения с тем или иным предметом - понятие метода распространяется на различные области практики.

Метод (Грицанов, 1998)

МЕТОД (греч. methodos - путь к чему-либо, прослеживание, исследование) - способ достижения цели, совокупность приемов и операций теоретического или практического освоения действительности, а также человеческой деятельности, организованной определенным образом. М. в науке - это также и заданный сопряженной гипотезой путь ученого к постижению предмета изучения. В границах античной философии было впервые обращено внимание на взаимосвязь результата и М. познания. Систематическое исследование М. связано с генезисом экспериментальной науки.

Метод (Райзберг, 2012)

МЕТОД - способ поиска, выработки, построения, обоснования, передачи новых знаний, умений, совокупности процедур и операций теоретического и эмпирического познания, освоения реальной действительности, преобразования и использования всего сущего. В экономике и социологии широко используются исторический, сравнительный, генетический, статистический, опросно-наблюдательный, документальный, модельный, математический, эвристический методы.

Райзберг Б.А. Современный социоэкономический словарь. М., 2012, с. 277.

Метод аксиоматический

МЕТОД АКСИОМАТИЧЕСКИЙ - способ построения теории, при котором в ее основу кладутся некоторые ее положения - аксиомы или постулаты, из которых все остальные положения теории (теоремы) выводятся путем рассуждений, называемых доказательствами. Правила, по которым должны проводиться эти рассуждения, рассматриваются в логике - в учении о дедукции-, все понятия, с которыми имеют дело в доказательствах (кроме небольшого числа первоначальных понятий), вводятся на основе определений, разъясняющих их смысл через ранее введенные или известные понятия.

краткий курс

МАТЕМАТИЧЕСКИЕ МЕТОДЫИССЛЕДОВАНИЯ ОПЕРАЦИЙВ ЭКОНОМИКЕ

П. Конюховский

УЧЕБНОЕ ПОСОБИЕ

Санкт-Петербург

Москва Харьков Минск

Конюховский П. В.

Математические методы исследования операций в экономике

Серия «Краткий курс»

ББК22.183я7+65.529 УДК519.8(075)+658.012.122(075)

Конюховский П. В.

К65 Математические методы исследования операций в экономике - СПб.: Издательство «Питер», 2000. - 208 с. - (Серия «Краткийкурс»).

ISBN 5-8046-0190-3

В настоящем учебном пособии представлены основные разделы исследо­вания операций. Упор делается на изложении теоретических и практических аспектов алгоритмов решения экстремальных задач, которые формулируются на базе известных экономико-математических моделей. Отдельное внимание уделяется вопросам содержательной экономической интерпретации формаль­ных математических понятий.

Серия книг «Краткий курс» предназначена для студентов экономических и управленческих специальностей всех форм обучения, а также для всех инте­ресующихся соответствующей темой.

© Конюховский П. В., 2000

© Серия, оформление, ЗАО «Издательство «Питер», 2000

Все права защищены. Никакая часть данной книги не может быть воспроизведена в какой бы то ни было форме без письменного разрешения владельцев авторских прав.

ISBN 5-8046-0190-3

Издательство «Питер». 196105, С.-Петербург, Благодатная ул., 67. Лицензия ЛР № 066333 от 23.02.99.

Подписано к печати15.09.99. Формат 60х90/16. Усл. п. л. 13.

Тираж 5000. Заказ 4418.

Отпечатано с фотоформ в АООТ «Типография „Правда”».

119. С.-Петербург, Социалистическая ул., 14.

Последние годы ознаменовались выходом большого количества книг, посвященных тем или иным разделам экономической науки. Среди них ведущее место, как по количеству наименова­ний так и по тиражу, занимают издания, посвященные финан­сам банковскому делу, теоретическим и практическим вопро­сам управления ценными бумагами. В значительной степени сложившаяся ситуация объясняется острым дефицитом подоб­ной литературы в предыдущие десятилетия. Однако обратной стороной этого несомненно позитивного процесса стало воз­никновение определенного дидактического вакуума вокруг дру­гих экономических тем. Стремление восполнить один из таких пробелов послужило стимулом для выпуска настоящей книги, посвященной основам исследования операции.

Формирование исследования операций как самостоятель­ной ветви прикладной математики относится к периоду 40-х и 50-х годов. Последующие полтора десятилетия были отмечены широким применением полученных фундаментальных теорети­ческих результатов к разнообразным практическим задачам и связанным с этим переосмыслением потенциальных возможно­стей теории. В результате исследование операции приобрело черты классической научной дисциплины, без которой немыс­лимо базовое экономическое образование.

Обращаясь к задачам и проблемам, составляющим предмет исследования операций, нельзя не вспомнить о вкладе, внесен­ном в их решение представителями отечественной научной школы, среди которых в первую очередь должен быть назван Л. В. Канторович, ставший в 1975 г. лауреатом Нобелевской премии за свои работы по оптимальному использованию ресур­сов в экономике.

Предлагаемая вашему вниманию книга задумана как учебное пособие для специалистов в области экономики и управления предприятиями, и призвано создать общее представление о типах задач, изучаемых в исследовании операции, методах их решения и принципиальных идеях, лежащих в основе этих методов. Математические аспекты предмета по отношению к постав­ленным перед настоящим изданием целям не являются перво­степенными. Однако, по мнению автора, попытки излагать те или иные результаты в полном отрыве от математического ап­парата, на основе которого они получены, являются несостоя­тельными и выхолащивающими объективную количественную сторону изучаемых объектов. Поэтому для понимания излага­емого здесь материала от читателя потребуется определенное владение базовыми знаниями из соответствующих разделов ма­тематического анализа и линейной алгебры. Необходимо при­знать, что любая книга экономико-математического направле­ния может быть подвергнута критике либо за чрезмерную перегруженность математическими изысками и оторванность от реальной экономической проблематики, либо за отсутствие математической строгости и корректности, и, естественно, каж­дый автор, исходя из своих вкусов, представлений и умения, ищет оптимальное сочетание того и другого. Ну а о том, на­сколько это удается, судит читатель...

Книга способствует расширению читательского кругозора и помогает ориентироваться среди разделов, задач и методов ис­следования операций. В этой связи многие темы представлены в обзорном ключе.

Несколько замечаний по используемым в ходе изложения условным обозначениям:

¨ базовые понятия предмета при их первом появлении в тексте выделяются курсивом , а наиболее важные их них (те, кото­рые стоит не забывать и после прочтения!) - жирным шрифтом;

¨ перед фундаментальными определениями стоит символ -;

¨ количество приводимых в данной книге теорем минимизиро­вано (это, однако, не должно создать у неподготовленного читателя превратного впечатления об их действительном количестве); в тех местах, где встречается теорема, ее фор­мулировка выделяется слева двойной чертой;

¨ доказательство теоремы завершается символом -.

Начало развития исследования операций как науки традицион­но связывают с сороковыми годами двадцатого столетия. Среди первых исследований в данном направлении может быть назва­на работа Л. В. Канторовича «Математические методы органи­зации и планирования производства», вышедшая в 1939 г. В за­рубежной литературе отправной точкой обычно считается вышедшая в 1947 г. работа Дж. Данцига, посвященная реше­нию линейных экстремальных задач.

Следует отметить, что не существует жесткого, устоявше­гося и общепринятого определения предмета исследования опе­раций. Часто при ответе на данный вопрос говорится, что «ис­следование операций представляет собой комплекс научных методов для решения задач эффективного управления органи­зационными системами» .

Природа систем, фигурирующих в приведенном определении под именем «организационных», может быть самой различной, а их общие математические модели находят применение не толь­ко при решении производственных и экономических задач, но и в биологии, социологических исследованиях и других практи­ческих сферах. Кстати, само название дисциплины связано с применением математических методов для управления военны­ми операциями.

Несмотря на многообразие задач организационного управ­ления, при их решении можно выделить некоторую общую по­следовательность этапов, через которые проходит любое опе­рационное исследование. Как правило, это:

1. Постановка задачи.

2. Построение содержательной (вербальной) модели рассматриваемого объекта (процесса). На данном этапе происходит формализация цели управления объектом, выделение возмож­ных управляющих воздействий, влияющих на достижение сфор­мулированной цели, а также описание системы ограничений на управляющие воздействия.

3. Построение математической модели, т. е. перевод сконст­руированной вербальной модели в ту форму, в которой для ее изучения может быть использован математический аппарат.

4. Решение задач, сформулированных на базе постро­енной математической модели.

5. Проверка полученных результатов на их адекватность природе изучаемой системы, включая исследование влияния так называемых внемодельных факторов, и возможная коррек­тировка первоначальной модели.

6. Реализация полученного решения на практике.

Центральное место в данной книге отведено вопросам, отно­сящимся к четвертому пункту приведенной выше схемы. Это делается не потому, что он является самым важным, сложным или интересным, а потому, что остальные пункты существенно зависят от конкретной природы изучаемой системы, в силу чего для действий, которые должны производиться в их рамках, не могут быть сформулированы универсальные и содержательные рекомендации. По этому поводу, например, X. Таха заметил, что исследование операций одновременно является как наукой, так и искусством .

Математическое моделирование в исследовании операций является, сводной стороны, очень важным и сложным, а с дру­гой - практически не поддающимся научной формализации процессом. Заметим, что неоднократно предпринимавшиеся по­пытки выделить общие принципы создания математических мо­делей приводили либо к декларированию рекомендаций самого общего характера, трудноприложимых для решения конкрет­ных проблем, либо, наоборот, к появлению рецептов, примени­мых в действительности только к узкому кругу задач. Поэтому более полезным представляется знакомство с техникой мате­матического моделирования на конкретных примерах.

В качестве таких примеров приведем несколько классиче­ских экономико-математических моделей и задач, которые мо­гут быть сформулированы на их основе.

Управление портфелем активов. Рассмотрим проблему принятия инвестором решения о вложении имеющегося у него капитала. Набор характеристик потенциальных объектов для инвестирования, имеющих условные имена от А до F, задается следующей таблицей.

Биткойн задумывался разработчиками как «электронный кэш», однако криптовалюта не оправдала надежд. В качестве средства накопления она не состоялась, а расплачиваться BTC за товары и услуги слишком неудобно. К таким заключениям пришел управляющий Банка Англии Марк Карни во время встречи со студентами Лондонского университета Риджентс.

Глава Банка Англии Марк Карни пополнил список скептиков, которые выступают против криптовалют. На встрече со студентами Лондонского университета Риджентс управляющий банка признал биткойн провальным проектом. «С точки зрения традиционных денег биткойн провалился. Его нельзя использовать как средство накопления из-за постоянных колебаний. И никто не пользуется им как средством обмена», - цитирует Reuters Карни.

Говоря об искусственном интеллекте и автоматизации, Маск отметил, что в течение нескольких десятилетий отрасль логистики станет практически автоматизированной. Однако, внедрение автоматизации не ограничится только этой сферой: она будет охватывать все больше и больше отраслей промышленности.

Что мешает нам развиваться и жить. Почему мы бедные

1. Регистрация предприятия

Почти все нынешние регистрационные документы и процедуры -- липа, туфта, никому не нужная бюрократия и очковтирательство.

Устав. В теории, устав -- это конституция будущего предприятия, он закрепляет права и обязанности учредителей и директора. На практике, уставы пишутся "юридическими компаниями". Они просто копируются. Устав не нужен никому, кроме учредителей и директора. А раз они уставы копируют, значит они не нужны и им. Устав должен быть делом добровольным. Нужен для бизнеса -- пусть будет, не нужен, нечего и требовать.