Ликвидация бизнеса. Приказы. Оборудование для бизнеса. Бухгалтерия и кадры
Поиск по сайту

Исследования операций в экономических системах их развитие. Вспомогательные методы исторического исследования. по дисциплине «Исследование операций в экономике»

1. Предмет и задачи исследования операций в экономике. Основные понятия теории исследования операций.

Предмет исследования операций - системы организационного управления или организации, которые состоят из большого числа взаимодействующих между собой подразделений не всегда согласующихся между собой и могут быть противоположны.

Цель исследования операций - количественное обоснование принимаемых решений по управлению организациями

Решение, которое оказывается наиболее выгодным для всей организации называется оптимальным, а решение наиболее выгодное одному или нескольким подразделениям будет субоптимальным.

Исследование операций - наука, занимающаяся разработкой и практическим применением методов наиболее оптимального управления организационными системами.

Операцией называется всякое мероприятие (система действий), объединенное единым замыслом и направленное к достижению какой-то цели.

Цель исследования операций - предварительное количественное обоснование оптимальных решений.

Всякий определенный выбор зависящих от нас параметров называется решением. Оптимальным называются решения, по тем или другим признакам предпочтительные перед другими.

Параметры, совокупность которых образует решение, называются элементами решения.

Множеством допустимых решений называются заданные условия, которые фиксированы и не могут быть нарушены.

Показатель эффективности - количественная мера, позволяющая сравнивать разные решения по эффективности.

2. Понятие о сетевом планировании и управлении. Сетевая модель процесса и ее элементы.

Метод работы с сетевыми графиками – сетевое планирование – базируется на теории графов. В переводе с греческого граф (grafpho – пишу) представляет систему точек, некоторые из них соединены линиями – дугами (или ребрами). Это топологическая (математическая) модель взаимодействующих систем. С помощью графов можно решать не только задачи сетевого планирования, но и другие задачи. Метод сетевого планирования применяется при планировании проведения комплекса взаимосвязанных работ. Он позволяет наглядно представить организационно-технологическую последовательность выполнения работ и установить взаимосвязь между ними. Кроме этого, он позволяет обеспечить координацию операций различной степени сложности и выявить операции, от которых зависит продолжительность всей работы (т.е. организационного мероприятия), а также сосредоточить внимание на своевременном выполнении каждой операции.

Основой сетевого планирования и управления является сетевая модель (СМ), в которой моделируется совокупность взаимосвязанных работ и событий, отображающих процесс достижения определенной цели. Она может быть представлена в виде графика или таблицы.

Основные понятия сетевой модели:

Событие, работа, путь.

Событиями называются результаты выполнения одной или нескольких работ. Они не имеют протяженности во времени.

Путь - это цепочка следующих друг за другом работ, соединяющих начальную и конечную вершины.

Продолжительность пути определяется суммой продолжительностей составляющих его работ.

3. Построение и упорядочивание сетевого графика.

В качестве модели, отражающей технологические и организационные взаимосвязи процесса производства строительно-монтажных работ в системах сетевого планирования и управления (СПУ), используется сетевая модель.

Сетевой моделью называется графическое изображение процессов, выполнение которых приводит к достижению одной или нескольких поставленных целей, с указанием установленных взаимосвязей между этими процессами. Сетевой график представляет собой сетевую модель с расчетными временными параметрами.

Структура сетевого графика, определяющая взаимную зависимость работ и событий, называется его топологией.

Работа - это производственный процесс, требующий затрат времени, труда и материальных ресурсов, который при его выполнении приводит к достижению определенных результатов.

Зависимость (фиктивная работа), не требующая затрат времени изображается пунктирной стрелкой. Фиктивная работа используется в сетевом графике для отражения связей между событиями и работами.

В сетевом графике применяются временные, стоимостные и другие характеристики работ.

Продолжительной работы – время выполнения данной работы в рабочих днях или других единицах времени, одинаковых для всех работ сетевого графика. Продолжительность работ может быть как определенной (детерминированной), так и случайной величиной, задаваемой законом ее распределения.

Стоимость работы – это прямые затраты, необходимые для ее выполнения, зависящие от длительности и условий выполнения этой работы.

Ресурсы характеризуются потребностью в физических единицах, необходимых для выполнения данной работы.

Качество, надежность и другие показатели работ служат дополнительными характеристиками работ.

Событие - это факт окончания одной или нескольких работ, необходимый и достаточный для начала одной или нескольких последующих работ. Каждому событию присваивается номер, называемый кодом. Каждая работа определяется двумя событиями: кодом начального события, обозначаемого i и кодом конечного события, обозначаемого буквой j.

События, не имеющие предшествующих работ, называются начальными; события, не имеющие последующих – конечными.

1 Направление построения сети может иметь различный характер. Сетевой график может строиться от начального события к завершающему и от завершающего к исходному (начальному), а также от любого из событий к исходному или конечному.

2 При построении сети решаются вопросы:

Какие работы (работу) необходимо выполнить, чтобы начать данную работу;

Какие работы целесообразно выполнять параллельно с данной работой;

3 Первоначальный сетевой график строится без учета продолжительности работ, составляющих сеть.

4 Форма графика должна быть простой и зрительно легко воспринимаемой.

5 Между двумя событиями может заключаться только одна работа. При строительстве зданий и сооружений работы могут выполняться последовательно, параллельно или одновременно, часть последовательно, а часть параллельно, в результате чего между отдельными работами складываются различные зависимости.

Нумерация (кодирование) событий производится после окончания построения сети, начиная от исходного события до конечного.

4. Критический путь сетевого графика. Резервы времени. Ранние и поздние сроки событий и работ в сетевом графике.

В сетевом графике между начальным и конечным событиями может быть несколько путей. Путь, имеющий наибольшую продолжительность, называется критическим. Критический путь определяет общую продолжительность работ. Все остальные пути имеют меньшую продолжительность, и поэтому в них выполняемое работы имеют резервы времени.

Критический путь обозначается на сетевом графике утолщенными или двойными линиями (стрелками).

Особое значение при составлении сетевого графика имеют два понятия:

Раннее начало работы - срок, раньше которого нельзя начать данную работу, не нарушив принятой технологической последовательности. Он определяется наиболее долгим путем от исходного события до начала данной работы

Позднее окончание работы - самый поздний срок окончания работы, при котором не увеличивается общая продолжительность работ. Он определяется самым коротким путем от данного события до завершения всех работ.

Раннее окончание - срок, раньше которого нельзя закончить данную работу. Он равен раннему началу плюс продолжительность данной работы

Позднее начало - срок, позже которого нельзя начинать данную работу, не увеличив общую продолжительность строительства. Он равен позднему окончанию минус продолжительность данной работы.

Если событие является окончанием лишь одной работы (т.е. в него направлена только одна стрелка), то раннее окончание этой работы совпадает с ранним началом последующей.

Общий (полный) резерв - это наибольшее время, на которое можно задержать выполнение данной работы, не увеличивая общую продолжительность работ. Он определяется разностью между поздним и ранним началом (или поздним и ранним окончанием - что то же самое).

Частный (свободный) резерв - это наибольшее время, на которое можно задержать выполнение данной работы, не меняя раннего начала последующей. Этот резерв возможен только тогда, когда в событие входят две или более работы (зависимости), т.е. на него направлены две или более стрелки (сплошные или пунктирные). Тогда лишь у одной из этих работ раннее окончание будет совпадать с ранним началом последующей работы, для остальных же это будут разные значения. Эта разница у каждой работы и будет ее частным резервом.

5. Динамическое программирование. Принцип оптимальности и управления Беллмана.

Динамическое программирование – один из наиболее мощных методов оптимизации. С задачами принятия рациональных решений, выбора наилучших вариантов, оптимального управления имеют дело специалисты разного профиля. Среди методов оптимизации динамическое программирование занимает особое положение. Этот метод исключительно привлекателен благодаря простоте и ясности своего основного принципа – принципа оптимальности. Сфера приложения принципа оптимальности чрезвычайно широка, круг задач, к которым он может быть применен, до настоящего времени еще полностью не очерчен. Динамическое программирование с самого начала выступает как средство практического решения задач оптимизации.

Кроме принципа оптимальности, основного приема исследования, большую роль в аппарате динамического программирования играет идея погружения конкретной задачи оптимизации в семейство аналогичных задач. Третьей его особенностью, выделяющей его среди других методов оптимизации, является форма конечного результата. Применение принципа оптимальности и принципа погружения в многошаговых, дискретных процессах приводят к рекуррентно-функцио-нальным уравнениям относительно оптимального значения критерия качества. Полученные уравнения позволяют последовательно выписать оптимальные управления для исходной задачи. Выигрыш здесь состоит в том, что задача вычисления управления для всего процесса разбивается на ряд более простых задач вычисления управления для отдельных этапов процесса.

Главным недостатком метода является, говоря словами Беллмана, «проклятие размерности» – его сложность катастрофически возрастает с увеличением размерности задачи.

6. Задача о распределении средств между предприятиями.

Можно сказать, что процедура построения оптимального управления методом динамического программирования распадается на две стадии: предварительную и окончательную. На предварительной стадии для каждого шага определяется УОУ зависящее от состояния системы (достигнутого в результате предыдущих шагов), и условно оптимальный выигрыш на всех оставшихся шагах, начиная с данного, также зависящий от состояния. На окончательной стадии определяется (безусловное) оптимальное управление для каждого шага. Предварительная (условная) оптимизация производится по шагам в обратном порядке: от последнего шага к первому; окончательная (безусловная) оптимизация - также по шагам, но в естественном порядке: от первого шага к последнему. Из двух стадий оптимизации несравненно более важной и трудоемкой является первая. После окончания первой стадии выполнение второй трудности не представляет: остается только "прочесть" рекомендации, уже заготовленные на первой стадии.

7. Постановка задачи линейного программирования.

Линейное программирование -- популярный инструмент решения экономических задач, которые характиризуются наличием одного критерия (например, максимизировать доход от производства продукции за счет оптимального выбора производственной программы, или, например, минимизировать транспортные расходы и пр.). Для экономических задач характерны ресурсные ограничения (материальные и / или финансовые). Они записываются в виде системы неравенств, иногда в виде равенств.

С точки зрения прогнозирования допустимых интервалов цен (или объемов продаж) в рамках обобщенного непараметрического метода, применение линейного программирования означает:

Критерием является MAX цена очередного продукта из интересуемой группы f.

Управляемыми переменными величинами являются цены всех продуктов из группы f.

Ограничениями в нашей задаче прогнозирования с использованием обобщенного непараметрического метода, являются:

a) система неравенств (ограничения рациональности поведения потребителя) (см. 4.2. Прогнозирование в рамках обобщенного непараметрического метода);

б) требование неотрицательности управляемых переменных (в нашей задаче прогнозирования мы потребуем, чтобы цены на продукты из группы f не опустились ниже 80% от значений цен в последней временной точке) ;

в) бюджетное ограничение в виде равенства - требование постоянства суммы затрат на покупку продуктов из группы f (с учетом 15% инфляции, например).

8. Графический метод решения задач линейного программирования.

Графический метод основан на геометрической интерпретации задачи линейного программирования и применяется в основном при решении задач двумерного пространства и только некоторых задач трехмерного простран6тва, так как довольно трудно построить многогранник решений, который образуется в результате пересечения полупространств. Задачу пространства размерности больше трех изобразить графически вообще невозможно.

Пусть задача линейного программирования задана в двумерном пространстве, т. е. ограничения содержат две переменные.

Найти минимальное значение функции

(2.1) Z = С1х1+С2х2

a11x1 + a22x2 b1

(2.2)a21x1 + a22x2 b2

aM1x1 + aM2x2 bM

(2.3) х1 0, х2 0

Допустим, что система (2.2) при условии (2.3) совместна и ее многоугольник решений ограничен. Каждое из неравенств (2.2) и (2.3), как отмечалось выше, определяет полуплоскость с граничными прямыми: ai1x1 + ai2x2 + ai3x3 = bi,(i = 1, 2, ..., n), х1=0, х2=0. Линейная функция (2.1) при фиксированных значениях Z является уравнением прямой линии: С1х1 + С2х2 = const. Построим многоугольник решений системы ограничений (2.2) и график линейной функции (2.1) при Z = 0 (рис. 2.1). Тогда поставленной задаче линейного прграммирования можно дать следующую интерпретацию. Найти точку многоугольника решений, в которой прямая С1х1 + С2х2 = const опорная и функция Z при этом достигает минимума.

Значения Z = С1х1 + С2х2 возрастают в направлении вектора N =(С1, С2), поэтому прямую Z = 0 передвигаем параллельно самой себе в направлении вектора Х. Из рис. 2.1 следует, что прямая дважды становится опорной по отношению к многоугольнику решений (в точках А и С), причем минимальное значение принимает в точке А. Координаты точки А (х1, х2) находим, решая систему уравнений прямых АВ и АЕ.

Если многоугольник решений представляет собой неограниченную многоугольную область, то возможны два случая.

Случай 1. Прямая С1х1 + С2х2 = const, передвигаясь в направлении вектора N или противоположно ему, постоянно пересекает многоугольник решений и ни в какой точке не является опорной к нему. В этом случае линейная функция не ограничена на многоугольнике решений как сверху, так и снизу (рис. 2.2).

Случай 2. Прямая, пере-двигаясь, все же становится опорной относительно многоу-гольника решений (рис. 2.2, а – 2.2, в). Тогда в зави-симости от вида области ли-нейная функция может быть ограниченной сверху и неограниченной снизу (рис. 2.2, а), ограниченной снизу и неограниченной сверху (рис. 2.2, б), либо ограниченной как снизу, так и сверху (рис. 2.2, в).

9. Симплекс- метод.

Симплекс-метод является основным в линейном программировании. Решение задачи начинается с рассмотрений одной из вершин многогранника условий. Если исследуемая вершина не соответствует максимуму (минимуму), то переходят к соседней, увеличивая значение функции цели при решении задачи на максимум и уменьшая при решении задачи на минимум. Таким образом, переход от одной вершины к другой улучшает значение функции цели. Так как число вершин многогранника ограничено, то за конечное число шагов гарантируется нахождение оптимального значения или установление того факта, что задача неразрешима.

Этот метод является универсальным, применимым к любой задаче линейного программирования в канонической форме. Система ограничений здесь - система линейных уравнений, в которой количество неизвестных больше количества уравнений. Если ранг системы равен r, то мы можем выбрать r неизвестных, которые выразим через остальные неизвестные. Для определенности предположим, что выбраны первые, идущие подряд, неизвестные X1, X2, ..., Xr. Тогда наша система уравнений может быть записана как

Симплекс-метод основан на теореме, которая называется фундаментальной теоремой симплекс-метода. Среди оптимальных планов задачи линейного программирования в канонической форме обязательно есть опорное решение ее системы ограничений. Если оптимальный план задачи единственен, то он совпадает с некоторым опорным решением. Различных опорных решений системы ограничений конечное число. Поэтому решение задачи в канонической форме можно было бы искать перебором опорных решений и выбором среди них того, для которого значение F самое большое. Но, во-первых, все опорные решения неизвестны и их нужно находить, a, во-вторых, в реальных задачах этих решений очень много и прямой перебор вряд ли возможен. Симплекс-метод представляет собой некоторую процедуру направленного перебора опорных решений. Исходя из некоторого, найденного заранее опорного решения по определенному алгоритму симплекс-метода мы подсчитываем новое опорное решение, на котором значение целевой функции F не меньше, чем на старом. После ряда шагов мы приходим к опорному решению, которое является оптимальным планом.

10. Постановка транспортной задачи. Методы определения опорных планов.

Имеется m пунктов отправления («поставщиков») и n пунктов потребления («потребителей») некоторого одинакового товара. Для каждого пункта определены:

ai – объемы производства i -го поставщика, i = 1, …, m;

вj – спрос j-го потребителя, j= 1,…,n;

сij – стоимость перевозки одной единицы продукции из пункта Ai– i-го поставщика, в пункт Вj – j-го потребителя.

Для наглядности данные удобно представлять в виде таблицы, которую называют таблицей стоимостей перевозок.

Требуется найти план перевозок, при котором бы полностью удовлетворялся спрос всех потребителей, при этом хватало бы запасов поставщиков и суммарные транспортные расходы были бы минимальными.

Под планом перевозок понимают объем перевозок, т.е. количество товара, которое необходимо перевезти от i-го поставщика к j-му потребителю. Для построения математической модели задачи необходимо ввести m·n штук переменных хij, i= 1,…, n, j= 1, …, m, каждая переменная хij обозначает объем перевозок из пункта Ai в пункт Вj. Набор переменных X = {xij} и будет планом, который необходимо найти, исходя из постановки задачи.

Это условие для решения закрытых и открытых транспортных задач (ЗТЗ).

Очевидно, что для разрешимости задачи 1 необходимо, чтобы суммарный спрос не превышал объема производства у поставщиков:

Если это неравенство выполняется строго, то задача называется «открытой» или «несбалансированной», если же , то задача называется «закрытой» транспортной задачей, и будет иметь вид (2):

– условие сбалансированности.

Это условие для решения закрытых транспортных задач (ЗТЗ).

11. Алгоритм решения транспортной задачи.

Применение алгоритма требует соблюдения ряда предпосылок:

1. Должна быть известна стоимость перевозки единицы продукта из каждого пункта производства в каждый пункт назначения.

2. Запас продуктов в каждом пункте производства должен быть известен.

3. Потребности в продуктах в каждом пункте потребления должны быть известны.

4. Общее предложение должно быть равно общему спросу.

Алгоритм решения транспортной задачи состоит из четырех этапов:

Этап I. Представление данных в форме стандартной таблицы и поиск любого допустимого распределения ресурсов. Допустимым называется такое распределение ресурсов, которое позволяет удовлетворить весь спрос в пунктах назначения и вывезти весь запас продуктов из пунктов производства.

Этап 2. Проверка полученного распределения ресурсов на оптимальность

Этап 3. Если полученное распределение ресурсов не является оптимальным, то ресурсы перераспределяются, снижая стоимость транспортировки.

Этап 4. Повторная проверка оптимальности полученного распределения ресурсов.

Данный итеративный процесс повторяется до тех пор, пока не будет получено оптимальное решение.

12. Модели управления запасами.

Несмотря на то, что любая модель управления запасами призвана отвечать на два основных вопроса (когда и сколько), имеется значительное число моделей, для построения которых используется разнообразный математический аппарат.

Такая ситуация объясняется различием исходных условий. Главным основанием для классификации моделей управления запасами является характер спроса на хранимую продукцию (напомним, что с точки зрения более общей градации сейчас мы рассматриваем лишь случаи с независимым спросом).

Итак, в зависимости от характера спроса модели управления запасами могут быть

детерминированными;

вероятностными.

В свою очередь детерминированный спрос может быть статическим, когда интенсивность потребления не изменяется во времени, или динамическим, когда достоверный спрос с течением времени может изменяться.

Вероятностный спрос может быть стационарным, когда плотность вероятности спроса не изменяется во времени, и нестационарным, где функция плотности вероятности меняется в зависимости от времени. Приведенную классификацию поясняет рисунок.

Наиболее простым является случай детерминированного статического спроса на продукцию. Однако такой вид потребления на практике встречается достаточно редко. Наиболее сложные модели - модели нестационарного типа.

Кроме характера спроса на продукцию при построении моделей управления запасами приходится учитывать множество других факторов, например:

сроки выполнения заказов. Продолжительность заготовительного периода может быть постоянной либо являться случайной величиной;

процесс пополнения запаса. Может быть мгновенным либо распределенным во времени;

наличие ограничений по оборотным средствам, складской площади т.п.

13. Системы массового обслуживания (СМО) и показатели их эффективности.

Системы массового обслуживания (СМО) представляют собой системы специального вида, реализующие многократное выполнение однотипных задач. Подобные системы играют важную роль во многих областях экономики, финансов, производства и быта. В качестве примеров СМО в финансово-экономической; сфере можно привести банки различных типов (коммерческие, инвестиционные, ипотечные, инновационные, сберегательные), страховые организации, государственные акционерные общества, компании, фирмы, ассоциации, кооперативы, налоговые инспекции, аудиторские службы, различные системы связи (в том числе телефонные станции), погрузочно-разгрузочные комплексы (порты, товарные станции), автозаправочные станции, различные предприятия и организации сферы обслуживания (магазины, справочные бюро, парикмахерские, билетные кассы, пункты по обмену валюты, ремонтные мастерские, больницы). Такие системы, как компьютерные сети, системы сбора, хранения и обработки информации, транспортные системы, автоматизированные производственные участки, поточные линии, различные военные системы, в частности системы противовоздушной или противоракетной обороны, также могут рассматриваться как своеобразные СМО

Каждая СМО включает в свою структуру некоторое число обслуживающих устройств, которые называют каналами (приборами, линиями) обслуживания. Роль каналов могут играть различные приборы, лица, выполняющие те или иные операции (кассиры, операторы, парикмахеры, продавцы), линии связи, автомашины, краны, ремонтные бригады, железнодорожные пути, бензоколонки и т.д.

Системы массового обслуживания могут быть одноканальными или многоканальными.

Каждая СМО предназначена для обслуживания (выполнения) некоторого потока заявок (требований), поступающих на вход системы большей частью не регулярно, а случайные моменты времени. Обслуживание заявок, в этом случае, также длится не постоянное, заранее известное время, а случайное время, которое зависит от многиx случайных, порой неизвестных нам, причин. После обслуживания заявки канал освобождается и готов к приему следующей заявки. Случайный характер потока заявок и времени их обслуживания приводит к неравномерной загруженности СМО: в иное время на входе СМО могут скапливаться необслуженные заявки, что приводит к перегрузке СМО, а иногда при свободных каналах на входе СМО заявки не будет, что приводит к недогрузке СМО, т.е. к простаиванию ее каналов. Заявки, скапливающиеся на входе СМО, либо «становятся» в очередь, либо по причине невозможности дальнейшего пребывания в очереди покидают СМО необслуженными.

Показатели эффективности функционирования пары «СМО - потребитель», где под потребителем понимают всю совокупность заявок или некий их источник (например, средний доход, приносимый СМО в единицу времени, и т.п.). Эта группа показателей оказывается полезной в тех случаях, когда некоторый доход, получаемый от обслуживания заявок, и затраты на обслуживание измеряются в одних и тех же единицах. Эти показатели обычно носят вполне конкретный характер и определяются спецификой СМО, обслуживаемых заявок и дисциплиной обслуживания.

14. Уравнения динамики для вероятностных состояний (уравнения Колмогорова). Предельные вероятности состояний.

Формально дифференцируя уравнение Колмогорова-Чепмена по s при s = 0 получаем прямое уравнение Колмогорова:

Формально дифференцируя уравнение Колмогорова - Чепмена по t при t = 0 получаем обратное уравнение Колмогорова

Необходимо подчеркнуть, что для бесконечномерных пространств оператор уже не обязательно непрерывен, и может быть определен не всюду, например, быть дифференциальным оператором в пространстве распределений.

В том случае, если число состояний системы S является конечным и из каждого состояния представляется возможным перейти (за то или иное количество шагов) в каждое другое состояние, то предельные вероятности состояний существуют, а также не зависят от начального состояния системы.

На рис. показаны граф состояния и переходов, удовлетворяющие поставленному условию: из любого состояния система рано или поздно может перейти в любое другое состояние. Условие не будет выполняться при изменении направления стрелки 4-3 на графе рис, а на противоположное.

Допустим, что поставленное условие выполнено, и, следовательно, предельные вероятности существуют:

Предельные вероятности будут обозначаться теми же буквами что и вероятности состояний, при этом под ними подразумеваются числа, а не переменные величины (функции времени).

Ясно, что предельные вероятности состояний должны давать в сумме единицу: Следовательно, в системе при устанавливается некоторый предельный стационарный режим: пусть система и меняет собственные состояния случайным образом, однако вероятность каждого из этих состояний не зависит от времени и каждое из них осуществляется с некоторой постоянной вероятностью, представляющей собой среднее относительное время пребывания системы в этом состоянии.

15. Процесс гибели и размножения.

Марковским процессом гибели и размножения с непрерывным временем назовем такой с.п., который может принимать только целые неотрицательные значения; изменения этого процесса могут происходить в любой момент времени t, при этом в любой момент времени он может либо увеличиваться на единицу, либо остаться неизменным.

Потоками размножения λi(t) будем называть пуассоновские потоки, ведущие к увеличению функции X(t). Соответственно μi(t) – потоки гибели, ведущие к уменьшению функции X(t).

Составим по графу уравнения Колмогорова:

Если поток с конечным числом состояний:

Система уравнений Колмогорова для процесса гибели и размножения с ограниченным числом состояний имеет вид:

Процессом чистого размножения называется такой процесс гибели и размножения, у которого интенсивности всех потоков гибели равны нулю.

Процессом чистой гибели называется такой процесс гибели и размножения, у которого интенсивности всех потоков размножения равны нулю.

16. Системы массового обслуживания с отказами .

Наиболее простой из рассматриваемых задач в рамках теории массового обслуживания является модель одноканальной СМО с отказами или потерями.

Следует отметить, что в данном случае количество каналов равно 1 (). Этот канал принимает пуассоновский поток заявок, интенсивность которого равняется . Время оказывает влияние на интенсивность:

Если заявка прибыла в канал, который в данный момент не является свободным, она получает отказ и больше не числится в системе. Обслуживание заявок осуществляется в течение случайного времени , распределение которого реализуется в соответствии с показательным законом с параметром :

17. Системы массового обслуживания с ожиданием .

Заявка, поступившая в момент, когда канал занят, становится в очередь и ожидает обслуживания.

Система с ограниченной длиной очереди. Предположим сначала, что количество мест в очереди ограничено числом m, т. е. если заявка пришла в момент, когда в очереди уже стоят m заявок, она покидает систему необслуженной. В дальнейшем, устремив m к бесконечности, мы получим характеристики одноканальной СМО без ограничений длины очереди.

Будем нумеровать состояния СМО по числу заявок, находящихся в системе (как обслуживаемых, так и ожидающих обслуживания):

Канал свободен;

Канал занят, очереди нет;

Канал занят, одна заявка стоит в очереди;

Канал занят, k - 1 заявок стоят в очереди;

Канал занят, т заявок стоят в очереди.

18. Методы принятия решений в условиях конфликта. Матричные игры. Чистые и смешанные стратегии игр.

Матричная игра – это конечная игра двух игроков с нулевой суммой, в которой задаётся выигрыш игрока 1 в виде матрицы (строка матрицы соответствует номеру применяемой стратегии игрока 2, столбец – номеру применяемой стратегии игрока 2; на пересечении строки и столбца матрицы находится выигрыш игрока 1, соответствующий применяемым стратегиям).

Для матричных игр доказано, что любая из них имеет решение и оно может быть легко найдено путём сведения игры к задаче линейного программирования.

Матричная игра двух игроков с нулевой суммой может рассматриваться как следующая абстрактная игра двух игроков.

Первый игрок имеет m стратегий i = 1,2,...,m, второй имеет n стратегий j = 1,2,...,n. Каждой паре стратегий (i,j) поставлено в соответствие число аij, выражающее выигрыш игрока 1 за счёт игрока 2, если первый игрок примет свою i-ю стратегию, а 2 – свою j-ю стратегию.

Каждый из игроков делает один ход: игрок 1 выбирает свою i-ю стратегию (i=), 2 – свою j-ю стратегию (j=), после чего игрок 1 получает выигрыш аij за счёт игрока 2 (если аij<0, то это значит, что игрок 1 платит второму сумму | аij|). На этом игра заканчивается.

Каждая стратегия игрока i=; j = часто называется чистой стратегией.

Определение. Смешанной стратегией игрока называется полный набор вероятностей применения его чистых стратегий.

Таким образом, если игрок 1 имеет m чистых стратегий 1,2,...,m, то его смешанная стратегия x– это набор чисел x = (x1,..., xm) удовлетворяющих соотношениям

xi³ 0 (i= 1,m), =1.

Аналогично для игрока 2, который имеет n чистых стратегий, смешанная стратегия y– это набор чисел

y = (y1, ..., yn), yj ³ 0, (j = 1,n), = 1.

Так как каждый раз применение игроком одной чистой стратегии исключает применение другой, то чистые стратегии являются несовместными событиями. Кроме того, они являются единственными возможными событиями.

Чистая стратегия есть частный случай смешанной стратегии. Действительно, если в смешанной стратегии какая-либо i-я чистая стратегия применяется с вероятностью 1, то все остальные чистые стратегии не применяются. И эта i-я чистая стратегия является частным случаем смешанной стратегии. Для соблюдения секретности каждый игрок применяет свои стратегии независимо от выбора другого игрока.

19. Геометрический метод решения матричной игры.

Решение игр размера 2xn или nx2 допускает наглядную геометрическую интерпретацию. Такие игры можно решать графически.

На плоскости XY по оси абсцисс отложим единичный отрезок A1A2 (рисунок 5.1). Каждой точке отрезка поставим в соответствие некоторую смешанную стратегию U = (u1, u2). Причем расстояние от некоторой промежуточной точки U до правого конца этого отрезка – это вероятность u1 выбора стратегии A1, расстояние до левого конца - вероятность u2 выбора стратегии A2. Точка А1 соответствует чистой стратегии А1, точка А2 – чистой стратегии А2.

В точках А1 и А2 восстановим перпендикуляры и будем откладывать на них выигрыши игроков. На первом перпендикуляре (совпадающем с осью OY) покажем выигрыш игрока А при использовании стратегии А1, на втором – при использовании стратегии A2. Если игрок А применяет стратегию A1, то его выигрыш при стратегии B1 игрока B равен 2, а при стратегии B2 он равен 5. Числам 2 и 5 на оси OY соответствуют точки B1 и B2. Аналогично на втором перпендикуляре найдем точки B"1 и B"2 (выигрыши 6 и 4).

Соединяя между собой точки B1 и B"1, B2 и B"2, получим две прямые, расстояние от которых до оси OX определяет средний выигрыш при любом сочетании соответствующих стратегий.

Например, расстояние от любой точки отрезка B1B"1 до оси OX определяет средний выигрыш игрока A при любом сочетании стратегий A1 и A2 (с вероятностями u1 и u2) и стратегии B1 игрока B.

Ординаты точек, принадлежащих ломаной B1MB"2 определяют минимальный выигрыш игрока A при использовании им любых смешанных стратегий. Эта минимальная величина является наибольшей в точке М, следовательно, этой точке соответствует оптимальная стратегия U* = (,), а ее ордината равна цене игры v.

Координаты точки M найдем, как координаты точки пересечения прямых B1B"1 и B2B"2.

Для этого необходимо знать уравнения прямых. Составить такие уравнения можно, используя формулу для уравнения прямой, проходящей через две точки:

Составим уравнения прямых для нашей задачи.

Прямая B1B"1: = или y = 4x + 2.

Прямая B2B"2: = или y = -x + 5.

Получим систему: y = 4x + 2,

Решим ее: 4x + 2 = -x + 5,

x = 3/5, y = -3/5 + 5 = 22/5.

Таким образом, U = (2/5, 3/5), v = 22/5.

20. Биматричные игры.

Биматричная игра – это конечная игра двух игроков с ненулевой суммой, в которой выигрыши каждого игрока задаются матрицами отдельно для соответствующего игрока (в каждой матрице строка соответствует стратегии игрока 1, столбец – стратегии игрока 2, на пересечении строки и столбца в первой матрице находится выигрыш игрока 1, во второй матрице – выигрыш игрока 2.)

Для биматричных игр также разработана теория оптимального поведения игроков, однако решать такие игры сложнее, чем обычные матричные.

21. Статистические игры. Принципы и критерии принятия решений в условиях полной и частичной неопределенности.

В исследовании операций принято различать три типа неопределенностей:

неопределенность целей;

неопределенность наших знаний об окружающей обстановке и действующих в данном явлении факторах (неопределенность природы);

неопределенность действий активного или пассивного партнера или противника.

В приведенной выше классификации тип неопределенностей рассматривается с позиций того или иного элемента математической модели. Так, например, неопределенность целей отражается при постановке задачи на выборе либо отдельных критериев, либо всего вектора полезного эффекта.

С другой стороны, два другие типа неопределенностей влияют, в основном, на составление целевой функции уравнений ограничений и метода принятия решения. Конечно, приведенное выше утверждение является достаточно условным, как, впрочем, и любая классификация. Мы приводим его лишь с целью выделить еще некоторые особенности неопределенностей, которые надо иметь в виду в процессе принятия решений.

Дело в том, что кроме рассмотренной выше классификации неопределенностей надо учитывать их тип (или "род") с точки зрения отношения к случайности.

о этому признаку можно различать стохастическую (вероятностную) неопределенность, когда неизвестные факторы статистически устойчивы и поэтому представляют собой обычные объекты теории вероятностей - случайные величины (или случайные функции, события и т.д.). При этом должны быть известны или определены при постановке задачи все необходимые статистический характеристики (законы распределения и их параметры).

Примером таких задач могут быть, в частности, система технического обслуживания и ремонта любого вида техники, система организации рубок ухода и т.д.

Другим крайним случаем может быть неопределенность нестохастического вида (по выражению Е.С.Вентцель - "дурная неопределенность"), при которой никаких предположений о стохастической устойчивости не существует. Наконец, можно говорить о промежуточном типе неопределенности, когда решение принимается на основании каких-либо гипотез о законах распределения случайных величин. При этом ЛПР должен иметь в виду опасность несовпадения его результатов с реальными условиями. Эта опасность несовпадения формализуется с помощью коэффициентов риска.

Принятие решений в условиях риска может быть основано на одном из следующих критериев:

критерий ожидаемого значения;

комбинации ожидаемого значения и дисперсии;

известного предельного уровня;

наиболее вероятного события в будущем.

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

1. Общие понятия и определения в и сследование операций

Следует усвоить основные понятия и определения исследования операций.

Операция -- любое управляемое мероприятие, направленное на достижение цели. Результат операции зависит от способа ее проведения, организации, иначе -- от выбора некоторых параметров. Всякий определенный выбор параметров называется решением. Оптимальными считают те решения, которые по тем или иным соображениям предпочтительнее других. Поэтому основной задачей исследования операций является предварительное количественное обоснование оптимальных решений.

Замечание 1

Следует обратить внимание на постановку проблемы: само принятие решений выходит за рамки исследования операций и относится к компетенции ответственного лица или группы лиц, которые могут учитывать и другие соображения, отличные от математически обоснованных.

Замечание 2

Если в одних задачах исследования операций оптимальным является решение, при котором выбранный критерий эффективности принимает максимальное или минимальное значение, то в других задачах это вовсе не обязательно. Так, в задаче оптимальным можно считать, например, такое количество торговых точек и персонала в них, при котором среднее время обслуживания покупателей не превысит, например, 5 мин, а длина очереди в среднем в любой момент окажется не более 3 человек (1, стр. 10-11).

Эффективность производственно-коммерческой деятельности в значительной степени определяется качеством решений, повседневно принимаемым менеджерами разного уровня. В связи с этим большое значение приобретают задачи совершенствования процессов принятия решений, решить которые позволяет исследование операций. Термин «исследование операций» впервые начал использоваться в 1939-1940 гг. в военной области. К этому времени военная техника и ее управление принципиально усложнилось вследствие научно-технической революции. И поэтому к началу Второй мировой войны возникла острая необходимость проведения научных исследований в области эффективного использования новой военной техники, количественной оценки и оптимизации принимаемых командованием решений. В послевоенный период успехи новой научной дисциплины были востребованы в мирных областях: в промышленности, предпринимательской и коммерческой деятельности, в государственных учреждениях, в учебных заведениях.

Исследование операций - это методология применения математических количественных методов для обоснования решений задач во всех областях целенаправленной человеческой деятельности. Методы и модели исследования операций позволяют получить решения, наилучшим образом отвечающие целям организации.

Исследование операций -- это наука, занимающаяся разработкой и практическим применением методов наиболее эффективного (или оптимального) управления организационными системами.

Основной постулат исследования операций состоит в следующем: оптимальным решением (управлением) является такой набор значений переменных, при котором достигается оптимальное (максимальное или минимальное) значение критерия эффективности (целевой функции) операции и соблюдаются заданные ограничения.

Предметом исследования операций являются задачи принятия оптимальных решений в системе с управлением на основе оценки эффективности ее функционирования. Характерными понятиями исследования операций являются: модель, изменяемые переменные, ограничения, целевая функция.

Предмет исследования операций в реальности -- это системы организационного управления (организации), которые состоят из большого числа взаимодействующих между собой подразделений, причем интересы подразделений не всегда согласуются между собой и могут быть противоположными.

Целью исследования операций является количественное обоснование принимаемых решений по управлению организациями.

Решение, которое оказывается наиболее выгодным для всей организации, называется оптимальным, а решение, наиболее выгодное одному или нескольким подразделениям, будет субоптимальным.

В качестве примера типичной задачи организационного управления, где сталкиваются противоречивые интересы подразделений, рассмотрим задачу управления запасами предприятия.

Производственный отдел стремится выпускать как можно больше продукции при наименьших затратах. Поэтому он заинтересован в возможно более длительном и непрерывном производстве, т. е. в выпуске изделий большими партиями, ибо такое производство снижает затраты на переналадку оборудования, а следовательно и общие производственные затраты. Однако выпуск изделий большими партиями требует создания больших объемов запасов материалов, комплектующих изделий и т. д.

Отдел сбыта также заинтересован в больших запасах готовой продукции, чтобы удовлетворить любые запросы потребителя в любой момент времени. Заключая каждый контракт, отдел сбыта, стремясь продать как можно больше продукции, должен предлагать потребителю максимально широкую номенклатуру изделий. Вследствие этого между производственным отделом и отделом сбыта часто возникает конфликт по поводу номенклатуры изделий. При этом отдел сбыта настаивает на включении в план многих изделий, выпускаемых в небольших количествах даже тогда, когда они не приносят большой прибыли, а производственный отдел требует исключения таких изделий из номенклатуры продукции.

Финансовый отдел, стремясь минимизировать объем капитала, необходимого для функционирования предприятия, пытается уменьшить количество «связанных» оборотных средств. Поэтому он заинтересован в уменьшении запасов до минимума. Как видим, требования к размерам запасов у разных подразделений организации оказываются различными. Возникает вопрос, какая стратегия в отношении запасов будет наиболее благоприятной для всей организации. Это типичная задача организационного управления. Она связана с проблемой оптимизации функционирования системы в целом и затрагивает противоречивые интересы ее подразделений.

Основные особенности исследования операций:

1. Системный подход к анализу поставленной проблемы. Системный подход, или системный анализ, является основным методологическим принципом исследования операций, который состоит в следующем. Любая задача, какой бы частной она не казалась на первый взгляд, рассматривается с точки зрения ее влияния на критерий функционирования всей системы. Выше системный подход был проиллюстрирован на примере задачи управления запасами.

2. Для исследования операций характерно, что при решении каждой проблемы возникают все новые и новые задачи. Поэтому если сначала ставятся узкие, ограниченные цели, применение операционных методов не эффективно. Наибольший эффект может быть достигнут только при непрерывном исследовании, обеспечивающем преемственность в переходе от одной задачи к другой.

3. Одной из существенных особенностей исследования операций является стремление найти оптимальное решение поставленной задачи. Однако часто такое решение оказывается недостижимым из-за ограничений, накладываемых имеющимися в наличии ресурсами (денежные средства, машинное время) или уровнем современной науки. Например, для многих комбинаторных задач, в частности задач календарного планирования при числе станков п > 4, оптимальное решение при современном развитии математики оказывается возможным найти лишь простым перебором вариантов. Тогда приходится ограничиваться поиском «достаточно хорошего», или субоптимального решения. Поэтому исследование операций один из его создателей -- Т. Саати -- определил как «...искусство давать плохие ответы на те практические вопросы, на которые даются еще худшие ответы другими методами».

4. Особенность операционных исследований состоит в том, что они проводятся комплексно, по многим направлениям. Для проведения такого исследования создается операционная группа. В ее состав входят специалисты разных областей знания: инженеры, математики, экономисты, социологи, психологи. Задачей создания подобных операционных групп является комплексное исследование всего множества факторов, влияющих на решение проблемы, и использование идей и методов различных наук.

Каждое операционное исследование проходит последовательно следующие основные этапы:

1) описание задачи планирования,

2) построение математической модели,

3) нахождение решения,

4) проверка и корректировка модели,

5) реализация найденного решения на практике.

Описание задачи планирования:

· Задачи сетевого планирования и управления

рассматривают соотношения между сроками окончания крупного комплекса операций (работ) и моментами начала всех операций комплекса. Эти задачи состоят в нахождении минимальной продолжительности комплекса операций, оптимального соотношения величин стоимости и сроков их выполнения.

· Задачи массового обслуживания посвящены изучению и анализу систем обслуживания с очередями заявок или требований и состоят в определении показателей эффективности работы систем, их оптимальных характеристик, например в определении числа каналов обслуживания, времени обслуживания и т.п.

· Задачи управления запасами состоят в отыскании оптимальных значений уровня запасов (точек заказа) и размеров заказа. Особенность таких задач заключается в том, что с увеличением уровня запасов, с одной стороны, увеличиваются затраты на их хранение, но, с другой стороны, уменьшаются потери вследствие возможного дефицита запасаемого продукта.

· Задачи распределения ресурсов возникают при определенном наборе операций (работ), которые необходимо выполнять при ограниченных наличных ресурсах, и требуется найти оптимальные распределения ресурсов между операциями или состав операций.

· Задачи ремонта и замены оборудования актуальны в связи с износом и старением оборудования и необходимостью его замены с течением времени. Задачи сводятся к определению оптимальных сроков, числа профилактических ремонтов и проверок, а также моментов замены оборудования модернизированным.

· Задачи составления расписания (календарного планирования) состоят в определении оптимальной очередности выполнения операций (например, обработки деталей) на различных видах оборудования.

· Задачи планировки и размещения состоят в определении числа и места размещения новых объектов с учетом их взаимодействия с существующими объектами и между собой.

· Задачи выбора маршрута, или сетевые задачи, чаще всего встречаются при исследовании разнообразных задач на транспорте и в системе связи и состоят в определении наиболее экономичных маршрутов (1, стр.15).

2. Математическая форма моде ли

Моделирование - процесс исследования реальной системы, включающий построение модели, изучение ее свойств и перенос полученных сведений на моделируемую систему.

Модель - это некоторый материальный или абстрактный объект, находящийся в определенном объективном соответствии с исследуемым объектом, несущий о нем определенную информацию и способный его замещать на определенных этапах познания.

Математическое моделирование - процесс установления соответствия реальному объекту некоторого набора символов и выражений, например математических. Математические модели наиболее удобны для исследования и количественного анализа, позволяют не только получить решение для конкретного случая, но и определить влияние параметров системы на результат решения.

В создание современного математического аппарата и развитие многих направлений исследования операций большой вклад внесли российские ученые Л. В. Канторович, Н. П. Бусленко, Е. С. Вентцель, Н. Н. Воробьев, Н. Н. Моисеев, Д. Б. Юдин и многие другие. Особо следует отметить роль академика Л. В. Канторовича, который в 1939 г., занявшись планированием работы агрегатов фанерной фабрики, решил несколько задач: о наилучшей загрузке оборудования, раскрое материалов с наименьшими потерями, о распределении грузов по нескольким видам транспорта и др. Л. В. Канторович сформулировал новый класс условно-экстремальных задач и предложил универсальный метод их решения, положив начало новому направлению прикладной математики -- линейному программированию.

Значительный вклад в формирование и развитие исследования операций внесли зарубежные ученые Р. Акоф, Р. Беллман, Г. Данциг, Г. Кун, Дж. Нейман, Т. Саати, Р. Черч мен, А. Кофман и др. (1, стр. 17)

Этапы построения математических моделей :

Сущность построения математической модели состоит в том, что реальная система упрощается, схематизируется и описывается с помощью того или иного математического аппарата. Выделяют следующие основные этапы построения моделей.

Словесно описывается объект моделирования, цели его функционирования, среда, в которой он функционирует, выявляются отдельные элементы, возможные состояния, характеристики объекта и его элементов, определяются взаимосвязи между элементами, состояниями, характеристиками. Такое предварительное, приближенное представление объекта исследования называется концептуальной моделью. Этот этап является основой для последующего формального описания объекта.

2. Формализация операций

На основе содержательного описания определяется и анализируется исходное множество характеристик объекта, выделяются наиболее существенные из них. Затем выделяют управляемые и неуправляемые параметры, вводят символьные обозначения. Определяется система ограничений, строится целевая функция модели. Таким образом, происходит замена содержательного описания формальным (символьным, упорядоченным).

3. Проверка адекватности модели

Исходный вариант модели необходимо проверить по следующим аспектам:

1) все ли существенные параметры включены в модель?

2) нет ли в модели несущественных параметров?

3) правильно ли отражены связи между параметрами?

4) правильно ли определены ограничения на значения параметров?

Главным путем проверки адекватности модели исследуемому объекту выступает практика. После предварительной проверки приступают к реализации модели и проведению исследований. Полученные результаты моделирования подвергаются анализу на соответствие известным свойствам исследуемого объекта. По результатам проверки модели на адекватность принимается решение о возможности ее практического использования или о проведении корректировки.

4. Корректировка модели

На этом этапе уточняются имеющиеся сведения об объекте и все параметры построенной модели. Вносятся изменения в модель, и вновь выполняется оценка адекватности.

5. Оптимизация модели

Сущность оптимизации (улучшения) моделей состоит в их упрощении при заданном уровне адекватности. В основе оптимизации лежит возможность преобразования моделей из одной формы в другую. Основными показателями, по которым возможна оптимизация модели, являются время и затраты средств для проведения исследований и принятия решений с помощью модели.

Типы моделей:

В самом общем случае математическая модель задачи имеет вид:

max Z=F(x, y) (1.1)

при ограничениях

где Z=F(x, y) - целевая функция (показатель качества или эффективность) системы; х -- вектор управляемых переменных; у -- вектор неуправляемых переменных; Gi(x, y)-- функция потребления i-го ресурса; bi -- величина i-го ресурса (например, плановый фонд машинного времени группы токарных автоматов в станко-часах).

Определение 1. Любое решение системы ограничений задачи называется допустимым решением.

Определение 2. Допустимое решение, в котором целевая функция достигает своего максимума или минимума называется оптимальным решением задачи.

Для нахождения оптимального решения задачи в зависимости от вида и структуры целевой функции и ограничений используют те или иные методы теории оптимальных решений (методы математического программирования).

1. Линейное программирование, если F(x, y), -- линейны относительно переменных х.

2. Нелинейное программирование, если F(x, y) или -- нелинейны относительно переменных х.

3. Динамическое программирование, если целевая функция F(x, y) имеет специальную структуру, являясь аддитивной или мультипликативной функцией от переменных х.

F(x)=F(x1, x2, …, xn) -- аддитивная функция, если F(x1, x2, …, xn)=, и функция F(x1, x2, …, xn) -- мультипликативная функция, если F(x1, x2, …, xn)=.

4. Геометрическое программирование, если целевая функция F(x) и ограничения представляют собой функции вида

Математическая модель задачи в этом случае записывается в виде

при условиях

где I=(m0, m0+1, …, n0); I[k]= (mk, mk+1, …, nk); mk+1=nk+1; m0=1; n0=n.

5. Стохастическое программирование, когда вектор неуправляемых переменных у случаен.

В этом случае математическая модель задачи (1.1--1.2) будет иметь

maxMyE=My{f(x, y)}

при ограничениях

или вероятностных ограничениях

где My -- математическое ожидание по у; Р{gi (х)Ј b} -- вероятность того, что выполняется условие gi (х)Ј b.

6. Дискретное программирование, если на переменные xj наложено условие дискретности (например, целочисленности): xj -- целое, j=1,2,…,n1Јп.

7. Эвристическое программирование применяют для решения тех задач, в которых точный оптимум найти алгоритмическим путем невозможно из-за огромного числа вариантов. В таком случае отказываются от поиска оптимального решения и отыскивают достаточно хорошее (или удовлетворительное с точки зрения практики) решение. При этом пользуются специальными приемами -- эвристиками, позволяющими существенно сократить число просматриваемых вариантов. Эвристические методы также применяют, когда оптимальное решение в принципе может быть найдено (т.е. задача алгоритмически разрешима), однако для этого требуются объемы ресурсов, значительно превышающие наличные.

Из перечисленных выше методов математического программирования наиболее развитым и законченным является линейное программирование. В его рамки укладывается широкий круг задач исследования операций.

3. Линейное программирование

Несмотря на требование линейности целевой функции и ограничений, в рамки линейного программирования укладываются задачи распределения ресурсов, управления запасами, сетевого и календарного планирования, транспортные задачи, задачи теории расписаний и т. д.

Основные теоремы линейного программирования

В основе методов решения задач линейного программирования лежат следующие теоремы.

Основная теорема линейного программирования, устанавливающая место нахождения оптимальных решений.

Теорема 2.1. Если целевая функция принимает максимальное значение в некоторой точке допустимого множества R, то она принимает это значение в крайней точке R (вершине выпуклого многогранника). Если целевая функция принимает максимальное значение более, чем в одной крайней точке, то она принимает это же значение в любой их выпуклой комбинации.

Из теоремы 2.1 следует, что при отыскании оптимального решения достаточно просмотреть только крайние точки допустимого множества решений R.

Теорема 2.2. Каждое допустимое базисное решение соответствует крайней точке R.

Справедлива также следующая теорема, обратная к теореме 2.2. Теорема 2.3. Если -- крайняя точка допустимого множества решений R, то соответствующее решение x0 -- является допустимым базисным решением системы ограничений задачи линейного программирования.

Используя результаты теорем 2.1 и 2.2, можно сделать вывод, что для отыскания оптимального решения задачи линейного программирования достаточно перебрать лишь допустимые базисные решения. Этот вывод лежит в основе многих методов решения задач линейного программирования.

Определение оптимального ассортимента. Имеется р видов ресурсов в количествах а1, а2, ..., аi, ..., аp и q видов изделий. Задана матрица А=||aik||, где аik характеризует нормы расхода i-го ресурса на единицу k-го изделия (k = 1, 2, ..., q).

Эффективность выпуска единицы k-го изделия характеризуется показателем сi, удовлетворяющим условию линейности.

Определить план выпуска изделий (оптимальный ассортимент), при котором суммарный показатель эффективности принимает наибольшее значение.

4. Нелинейное программирование

В данной главе описываются оптимизационные задачи нелинейного программирования (НЛП), математические модели которых содержат нелинейные зависимости от переменных. Источники нелинейности относятся в основном к одной из двух категорий:

1) реально существующие и эмпирически наблюдаемые нелинейные соотношения, например: непропорциональные зависимости между объемом производства и затратами; между количеством используемого в производстве компонента и некоторыми показателями качества готовой продукции; между затратами сырья и физическими параметрами (давление, температура и т.п.) соответствующего производственного процесса; между выручкой и объемом реализации и др.;

2) установленные (постулируемые) руководством правила поведения или задаваемые зависимости, например: формулы или правила расчета с потребителями энергии или других видов услуг; эвристические правила определения страховых уровней запаса продукции; гипотезы о характере вероятностного распределения рассматриваемых в модели случайных величин; различного рода договорные условия взаимодействия между партнерами по бизнесу и др.

Решать линейные задачи значительно проще, чем нелинейные, и если линейная модель обеспечивает адекватность реальным ситуациям, то ее и следует использовать. В практике экономического управления модели линейного программирования успешно применялись даже в условиях нелинейности. В одних случаях нелинейность была несущественной и ею можно было пренебречь, в других -- производилась линеаризация нелинейных соотношений или применялись специальные приемы, например строились так называемые линейные аппроксимационные модели, благодаря чему достигалась требуемая адекватность. Тем не менее имеется большое число ситуаций, где нелинейность является существенной и ее нужно учитывать в явном виде.

Основные понятия НЛП:

* целевую функция;

* ограничения;

* допустимый план;

* множество допустимых планов;

* модель нелинейного программирования;

* оптимальный план.

Необходимо уметь:

* определять, является ли функция выпуклой;

* строить функцию Лагранжа задачи НЛП;

* проверять оптимальность полученных решений.

Модели НЛП

В общем виде задача НЛП описывается с помощью следующей модели нелинейного программирования:

исследование операция моделирование математический

где х = (x1, х2, ..., хn) -- вектор переменных задачи.

Задача (1)--(3) называется задачей нелинейного программирования в стандартной форме на максимум.

Может быть сформулирована также задача НЛП на минимум.

Вектор х = (x1, х2, ..., хn), компоненты хj которого удовлетворяют ограничениям (2) и (3), называется допустимым решением или допустимым планом задачи НЛП.

Совокупность всех допустимых планов называется множеством допустимых планов.

Допустимое решение задачи НЛП, на котором целевая функция (1) достигает максимального значения, называется оптимальным решением задачи НЛП.

Возможное местонахождение максимального значения функции F(x) при наличии ограничений (2) и (3) определяется следующим общим принципом. Максимальное значение F(x), если оно существует, может достигаться в одной или более точках, которые могут принадлежать следующим множествам:

Внутренняя точка множества допустимых планов, в которой все первые частные производные

Точка границы множества допустимых планов};

Точка множества допустимых планов, в которой функция F(x) недифференцируема}.

В отличие от задач линейного программирования, любая из которых может быть решена симплекс-методом, не существует одного или нескольких алгоритмов, эффективных для решения любых нелинейных задач. Какой-то алгоритм может оказаться чрезвычайно эффективным для решения задач одного типа и неудачным для задач другого типа.

Эффективность алгоритма может даже существенно зависеть от постановки задачи, например от изменения масштабов измерения тех или иных переменных. Поэтому алгоритмы разрабатываются для каждого класса (типа) задач. Программы, ориентированные на решение определенного класса задач, как правило, не гарантируют правильность решения любых задач данного класса, и оптимальность решения рекомендуется проверять в каждом конкретном случае.

В экономических приложениях рассматриваются следующие классы задач НЛП.

На рисунке приводится классификация задач и методов нелинейного программирования.

Рисунок. Классификация задач и методов нелинейного программирования

Большинство существующих методов в нелинейном программировании можно разделить на два больших класса:

1. Прямые методы - методы непосредственного решения исходной задачи. Прямые методы порождают последовательность точек - решений, удовлетворяющих ограничениям, обеспечивающим монотонное убывание целевой функции.

2. Недостаток: трудно получить свойство глобальной сходимости.

3. Задачи с ограничениями в виде равенств.

4. Метод замены переменных (МЗП)

5. Двойственные методы - методы, использующие понятие двойственности. В этом случае легко получить глобальную сходимость.

6. Недостаток: не дают решения исходной задачи в ходе решения - оно реализуемо лишь в конце итерационного процесса.

o Метод множителей Лагранжа (ММЛ)

o Методы штрафов

o Метод множителей

o Методы линеаризации для задач условной оптимизации

o Алгоритм Франка-Вульфа

o Метод допустимых направлений Зойтендейка

o Метод условного градиента

o Метод проекции градиента

o Сепарабельное программирование.

o Квадратичное программирование

1. Оптимизация нелинейной функции с ограничениями на неотрицательность значений переменных:

где х = (х1, х2,..., хn) -- вектор переменных задачи.

Пусть F(x) -- дифференцируемая функция.

Необходимые условия того, что в точке х0 достигается максимум функции F(x):

Это означает, что:

Если F(x) вогнутая функция (для задачи минимизации -- выпуклая), то эти условия являются также достаточными.

Функция F(x) с числовыми значениями, определенная на выпуклом множестве точек К, называется вогнутой, если для любой пары точек х1, х2 и для всех чисел l, 0 Ј l Ј 1, выполняется неравенство

то функция F(x) называется выпуклой. Если имеют место строгие неравенства, то говорят, что функция строго вогнута или строго выпукла.

Данное определение вогнутости (выпуклости) годится для любого типа функции. Практически, однако, применять его трудно.

Для дважды дифференцируемой функции F(x) имеет место следующий критерий. Дифференцируемая функция F(x) строго вогнута в некоторой окрестности точки если выполняются следующие условия:

т.е. если знаки этих определителей чередуются указанным образом.

Здесь -- частная производная второго порядка, вычисленная в точке х0.

Матрица размера п ґ п, составленная из элементов, называется матрицей Хессе (Hesse). По значениям ее главных миноров можно судить о выпуклости или вогнутости функции. Функция F(x) строго выпукла в малой окрестности точки х0, если все главные миноры ее матрицы Хессе строго положительны. Если имеют место нестрогие неравенства (і), то функция в окрестности точки х0 выпукла. Если при этом главные миноры матрицы Хессе от х не зависят, то функция всюду (строго) выпукла.

Весьма распространены относящиеся к данному типу модели квадратичного программирования, в которых целевая функция F(x) является квадратичной функцией переменных х1, х2, ..., хn. Существует большое число алгоритмов решения такого типа задач, в которых функция F(x) вогнутая (для задач минимизации -- выпуклая).

2. Модели выпуклого программирования. К такого рода моделям относятся задачи НЛП (1)--(3), в которых F(x) -- вогнутая (выпуклая) функция, a gi(x) -- выпуклые функции. При данных условиях локальный максимум (минимум) является и глобальным.

Пусть F(x) и gi(x), i= 1,..., т, -- дифференцируемые функции.

Необходимые и достаточные условия оптимальности решения -- выполнение условий Куна -- Таккера.

Рассмотрим задачу НЛП (1)--(3) и функцию Лагранжа

Условия Куна -- Таккера оптимальности решения х0 для задачи максимизации F(x) имеют вид

где -- частная производная функции Лагранжа по переменной хj при х = х0 и l = l0. Пусть максимальное значение F(x) равно F(x0) = F0. Числа связаны с F0 следующими соотношениями:

Из этих соотношений видно, что числа характеризуют реакцию значения F0 на изменение значения соответствующего bi. Например, если < 0, то при уменьшении bi (в пределах устойчивости) значение F0 увеличится, а = 0 указывает на несущественность соответствующего ограничения gi(х) Ј bi, которое может быть без ущерба для оптимального решения из системы ограничений исключено.

3. Сепарабельное программирование. Специальный случай выпуклого программирования при условии, что F(x) и все gi(х) -- сепарабельные функции, т.е.

Задачи данного вида сводятся к задачам линейного программирования.

4. Дробно-нелинейное программирование. Максимизировать (минимизировать) функцию

F(x) = F1(x)/F2(x).

В частном случае, когда в числителе и знаменателе -- линейные функции (так называемая задача дробно-линейного программирования), задача сводится к линейной.

5. Невыпуклое программирование. Функция F(x) и (или) какие-либо gi(x) не выпуклы. Надежных методов решения задач такого типа пока не существует (3, стр. 74-77)

Как пример, рассмотрим нелинейную модель оптимального распределения ресурсов:

Описание задачи распределения ресурсов

Задача распределения ресурсов рассматривается для n предприятий. Центр осуществляет управление этими промышленными предприятиями, выпускающими однотипную продукцию. Обозначим через Рi объем продукции, выпускаемой предприятием i, i=1,. ..,n. Результат функционирования центра определяется результатами функционирования отдельных производителей, т.к. центр сам не производит продукции.

Считаем, что величина продукции, произведенной i-м предприятием, определяется объемом фондов Fi и количеством рабочей силы Li, согласие производственной функции Кобба- Дугласа:

Где i=1,..,n (4)

В выражении (4) di и ki характеристики предприятия i (i=1,.. .,n), удовлетворяющие условиям: di > 0 , i=1,...,n.

Пусть wi - ставка заработной платы на предприятии i. Тогда доля дохода предприятия i в общей сумме прибыли объединения определится так:

Gi =ci*Pi-wi*Li , i=1,. . .,n.

Если величина фондов предприятия фиксирована, то объем продукции Pi однозначно определяется количеством рабочей силы.

Центр влияет на работу предприятий распределением дополнительного ресурса, который полностью находиться в его распоряжении. Если предприятие i получит дополнительный ресурс в количестве Vi, то оно сможет произвести продукцию в объеме

Задача центра состоит в распределении имеющегося в его распоряжении ресурса В, т. е. в определении оптимальных значений величин Vi, i =1,...,n, обеспечивающих максимум суммарной прибыли объединения в целом.

Математическая форма модели

В данной задаче считаем, что используется схема централизованного планирования, в рамках которой центр рассчитывает оптимальное распределение ресурсов, оптимальные величины рабочей силы при заданных параметрах модели. Конкретно центр изменяет Vi и Li, i = 1,...,n, из условий:

z = max (G1 + G2 + ,..., + Gn) (6)

Vi, Vimin, Li 0,i=1,...,n (7)

Анализ чувствительности модели как способ восстановления финансового равновесия.

Основой сохранения и восстановления финансового равновесия предприятия и снижения уровня риска является анализ чувствительности предложенной модели. Анализ чувствительности состоит из следующих этапов:

1. Выбор ключевого показателя, т.е. такого параметра, относительно которого и рассчитывается чувствительность проекта (чаще всего это чистый приведенный доход и внутренняя норма доходности).

2. Выбор факторов, которые влияют на эти показатели.

3. Расчет значений ключевых показателей на разных этапах реализации проекта (поиск, проектирование, строительство, эксплуатация).

Чем выше чувствительность показателей к факторам внешней среды, тем более рискованным является проект. Для каждого показателя определяется чувствительность каждого момента времени или отрезка времени. Определяется эффективность проекта.

Часто во время анализа чувствительности определяется точка безубыточности проекта, т.е. определяется тот объем выпуска продукции, при котором предприятие выходит из зоны убытка.

Анализ чувствительности проекта разрешает специалистам учитывать риск и неопределенность. Например, если цена продукции оказалась критической, то возможно усилить программу маркетинга или снизить стоимость проекта. Если критическим окажется объем выпущенной продукции, то необходимо повысить квалификацию рабочих, уделить внимание обучению персонала, менеджерам и другим факторам повышения производительности.

Недостатки метода анализа чувствительности:

1. Метод не рассчитан на все случайное и возможное обстоятельства.

2. Метод не уточняет вероятность реализации альтернативных проектов.

Анализ чувствительности оптимального решения

Анализ чувствительности выполняется уже после получения оптимального решения задачи линейного программирования (ЛП). Его цель -- определить, приведет ли изменение коэффициентов исходной задачи к изменению текущего оптимального решения, и если да, то, как эффективно найти новое оптимальное решение (если оно существует).

В общем случае изменение коэффициентов исходной задачи может привести к одной из следующих четырех ситуаций.

1. Текущее базисное решение остается неизменным.

2. Текущее решение становится недопустимым.

3. Текущее решение становится неоптимальным.

4. Текущее решение становится неоптимальным и недопустимым.

Во второй ситуации можно использовать двойственный симплекс-метод для восстановления допустимости решения. В третьей ситуации мы используем прямой симплекс-метод для получения нового оптимального решения. В четвертой для получения нового оптимального и допустимого решения следует воспользоваться как прямым, так и двойственным симплекс-методом.

Список литературы

1. «Исследование операций в экономике» учебное пособие для Вузов, 3-е издание, переработанное и дополненное, под ред. Н.Ш.Кремера, М.: Юрайт, 2013.

2. T.В. Алесинская « Основы логистики. Общие вопросы логистического управления» .Учебное пособие. Таганрог: Изд-во ТРТУ, 2005.

3. Афанасьев М.Ю., Суворов Б.П. Исследование операций в экономике: модели, задачи, решения. Учебное пособие, М, Инфра-М, 2003 г.

4. Филлипс Д., Гарсиа-Диас А. Методы анализа сетей. -М.: Мир,1984.

5. Грешилов А.А. Как принять наилучшее решение в реальных условиях. - М.: Радио и связь, 1991.

6. Попов Ю.Д. Линейное и нелинейное программирование. Учебное пособие. - Киев, 1988.

7. Зайченко Ю.П. Исследование операций. Учебное пособие для студентов вузов. - Киев: Вища школа. Головное издательство, 1979

8. Таха Х.. Введение в исследование операций: в 2-х книгах. - М.: Мир, 1985.

9. Акоф Р., Сасиени М. Основы исследования операций. - М.: Мир, 1997.

10. Акулич И.Л. Математическое программирование в примерах и задачах. - М.: Высшая школа, 1986.

11. Данко. Высшая математика в примерах и задачах.

12. Алексеев В. М., Голеев В. М., Тихомиров В. М. Сборник задач по оптимизации: Теория, примеры, задачи. М., Наука, 1984.

13. Берман Г. Н. Сборник задач по курсу математического анализа. М., Наука, 1985.

14. Ильин В.А.., Позняк Э.Г. Линейная алгебра. М., Наука, 1983.

15. Ильин В.А.., Позняк Э.Г. Основы математического анализа. М., Наука, Ч.1,2, 1980.

16. Клетеник Д..В. Сборник задач по аналитической геометрии. М., Наука, 1984.

17. Кудрявцев Л.Д.. Курс математического анализа. М., Высш. шк., Т. 1-3, 1988.

18. Кудрявцев Л.Д.. Краткий курс математического анализа. М., Наука, 1989.

19. Кудрявцев Л.Д.., Кутасов А..Д., Чехлов В.И., Шабунин М.И. Сборник задач по математическому анализу. Предел. Непрерывность. Дифференцируемость. М., Наука, 1984.

20. Кремер Н. Ш., Путко Б. А.., Тришин И.М., Фридман М. Ф. Высшая математика для экономистов. М., Банки и биржи, ЮНИТИ, 1998.

21. Гмурман В.Е. Теория вероятностей и математическая статистика. Учебное пособие для вузов. М., Высш. шк., 1999.

22. Ниворожкина Л.И., Морозова З.А. Основы статистики с элементами теории вероятностей для экономистов. Руководство для решения задач. Ростов н/Д., Феникс., 1999.

23. Данко П.Е. Высшая математика в упражнениях и задачах. Ч.2. М., Высш. шк., 1997.

24. Чистяков В.П. Курс теории вероятностей. М., Наука., 1987.

25. Севастьянов Б. А. Курс теории вероятностей и математической статистики. М., Наука., 1982.

26. Севастьянов Б.А., Чистяков В.П., Зубков А.М. Сборник задач по теории вероятностей. М., Наука., 1980.

27. Вентцель Е.С Исследование операций. Задачи. Принципы. Методология, 1980.

28. Горелик В.А., Ушаков И.А. Исследование операций. - М.: Машиностроение, 1986.

29. Исследование операций/ Под редакцией М.А. Войтенко и Н.Ш. Кремера.-М.: Экономическое образование, 1992.

30. Карасев А.И., Аксютин З.М., Савельева Т.И. Математические методы и модели в планировании М.: Экономика, 1987.

31. Исследование операций / Н. Н. Писарук. Минск: БГУ, 2013.272 c.

Размещено на Allbest.ru

...

Подобные документы

    Графическое решение задач линейного программирования. Решение задач линейного программирования симплекс-методом. Возможности практического использования математического программирования и экономико-математических методов при решении экономических задач.

    курсовая работа , добавлен 02.10.2014

    Понятие и типы моделей. Этапы построения математической модели. Основы математического моделирования взаимосвязи экономических переменных. Определение параметров линейного однофакторного уравнения регрессии. Оптимизационные методы математики в экономике.

    реферат , добавлен 11.02.2011

    Изучение экономических приложений математических дисциплин для решения экономических задач: использование математических моделей в экономике и менеджменте. Примеры моделей линейного и динамического программирования как инструмента моделирования экономики.

    курсовая работа , добавлен 21.12.2010

    Основные понятия линейной алгебры и выпуклого анализа, применяемые в теории математического программирования. Характеристика графических методов решения задачи линейного программирования, сущность их геометрической интерпретации и основные этапы.

    курсовая работа , добавлен 17.02.2010

    Математическая формализация оптимизационной проблемы. Геометрическая интерпретация стандартной задачи линейного программирования, планирование товарооборота. Сущность и алгоритм симплекс-метода. Постановка транспортной задачи, последовательность решения.

    учебное пособие , добавлен 07.10.2014

    Теоретические основы экономико-математических методов. Этапы принятия решений. Классификация задач оптимизации. Задачи линейного, нелинейного, выпуклого, квадратичного, целочисленного, параметрического, динамического и стохастического программирования.

    курсовая работа , добавлен 07.05.2013

    Общая постановка задачи линейного программирования (ЛП). Приведение задачи ЛП к стандартной форме. Теоремы двойственности и их использование в задачах ЛП. Транспортная задача и её решение методом потенциалов. Интерполирование табличных функций.

    курсовая работа , добавлен 31.03.2014

    Цель работы: изучить и научиться применять на практике симплекс - метод для решения прямой и двойственной задачи линейного программирования. Математическая постановка задачи линейного программирования. Общий вид задачи линейного программирования.

    реферат , добавлен 28.12.2008

    Модель динамического программирования. Принцип оптимальности и уравнение Беллмана. Описание процесса моделирования и построения вычислительной схемы динамического программирования. Задача о минимизации затрат на строительство и эксплуатацию предприятий.

    дипломная работа , добавлен 06.08.2013

    Основные подходы к математическому моделированию систем, применение имитационных или эвристических моделей экономической системы. Использование графического метода решения задачи линейного программирования для оптимизации программы выпуска продукции.

Адрес 153003, г. Иваново, ул. Рабфаковская, д. 34, корпус А, ауд. 206 Аудитории Ауд. А-205 (Телефон: 269796) Ауд. А-206 (Телефон: 269748)

Руководитель

Фото Должность декан Степень доктор экономических наук Звание Профессор E-mail karyakin economic ispu ru Информация

В 1979 году закончил ИЭИ по специальности «Электрические машины». В 1987 году защитил кандидатскую диссертацию в ИЭИ на тему: «Разработка и совершенствование процедур, алгоритмов и моделей автоматизированного проектирования силовых трансформаторов при решении задач структурно-параметрической оптимизации по специальности «Системы автоматизированного проектирования» 05.13.12. В 1999 году защитил докторскую диссертацию в ИвГУ на тему: «Совершенствование управления предприятиями в наукоемких отраслях на основе динамических структур: Теоретико-методические аспекты» по специальности 08.00.05, 08.00.28 "Экономика и управление в народном хозяйстве".
Научные интересы : стратегический менеджмент, управление персоналом, организационное поведение, энергетическая безопасность, информационные системы в экономике.
Публикации более 230 наименований. Среди них 22 учебных пособия и 5 монографий, 102 статьи в отечественных и зарубежных журналах и сборниках трудов.

Секретарь: Щудрова Наталья Сергеевна

Штатные сотрудники

Фото

Должность доцент Степень кандидат экономических наук E-mail ivanova-oe bk ru Информация

В 2008 г. закончила ИГЭУ по специальности 080507.65 «Менеджмент организации» (спец. «Финансовый менеджмент»). В 2011 г. в ЯрГУ защитила диссертацию на соискание ученой степени кандидата экономических наук по специальности 08.00.05 «Экономика и управление в народном хозяйстве (управление инновациями)» на тему: «Инновационный потенциал энергетических сетевых компаний: оценка и использование при формировании инвестиционной стоимости».
Сертификаты, удостоверения
Научные интересы : управление инновациями, развитие инновационной инфраструктуры регионов и территорий, модернизация национальной инновационной системы.
Публикации : автор более 80 научных трудов и учебно-методических публикаций.

Функции: заместитель декана по 1-2 курсам и заочному отделению.
Контакты : корпус А, ауд. 205

Фото

Должность доцент Степень кандидат исторических наук Звание Доцент E-mail kor_tv mail ru Информация

В 1997 году закончила ИвГУ по специальности «Историк. Преподаватель истории». В 2002 году защитила кандидатскую диссертацию в ИвГУ на тему «Женское движение во Франции 1789 - 1914 гг.» по специальности 07.00.03 - всеобщая история.
Научные интересы : гендерная история, социальная история, политическая история, социология общественных движений, история женского образования, воспитательная работа, компетентностный подход.
Публикации : автор 71 публикации, их них: 3 монографии, 4 учебных пособия, 11 учебно-методических разработок, 2 электронных учебных пособия.
Повышение квалификации

Функции : заместитель декана по воспитательной работе.

Фото

Должность доцент Информация

В 1990 году с отличием окончил Ивановский энергетический институт им. В.И. Ленина, квалификация инженер -промтеплоэнергетик.
Сертификаты, удостоверения :

    Сертификат №0180-02.06 - независимого эксперта по расчету и экспертизе нормативов технологических потерь при передаче тепловой энергии, удельного расхода топлива на отпущенную электрическую и тепловую энергию от тепловых электростанций и котельных и нормативов создания запасов топлива на тепловых электростанциях и котельных, выдан Межрегиональной ассоциацией «Энергоэффективность и нормирование», Межрегиональным институтом менеджмента энергоэффективности, г. Москва, 2006 г.

    Свидетельство №Э-0066 о подготовке энергоаудиторов и энергоменеджеров, выдано Нижегородским учебно-научным инновационным центром энергосбережения НГТУ, 2000 г.

    Удостоверение №Э-135 о краткосрочном повышении квалификации по «Энергетическому аудиту и энергосбережению в бюджетной сфере и промышленности», выдано Нижегородским учебно-научным инновационным центром энергосбережения НГТУ, 2001 г.

    Свидетельство о повышении квалификации СПК-0068 по экономике и управлению производством, выдано ФПКП ИГЭУ, 2002 г.

    Удостоверение №ГУ06-925 о краткосрочном повышении квалификации по расчету и экспертизе технологических потерь тепловой энергии, удельных расходов топлива и нормативов создания запасов топлива, выдано Межрегиональным институтом менеджмента энергоэффективности ГОУ ВПО МГТУ «Станкин», г. Москва, 2006 г.

    Свидетельство о повышении квалификации на ФПКП по программе "Вопросы технологии обучения", №УПК-231 выдано ФПКП ИГЭУ, 2007 г.

Научные интересы : энергосбережение, энергетический менеджмент, энергетический аудит, цены и тарифы на энергию, оценка экономической эффективности инвестиционных проектов.
Публикации : автор более 85 публикаций, из них 8 учебно-методических и более 40 научно-исследовательских работ.

Функции: заместитель декана по профориентации, член ревизионной комиссии профсоюзной организации.

Фото

Должность доцент Степень кандидат экономических наук Звание Доцент E-mail tarasova_as eiop ispu ru Информация

В 2002 году окончила ИГЭУ по специальности «Экономика и управление на предприятии». В 2009 году защитила кандидатскую диссертацию в ИГХТУ на тему: «Совершенствование методов обеспечения финансовой устойчивости оптовых генерирующих компаний Российской Федерации» по специальности 08.00.10 «Финансы, денежное обращение и кредит».

Сертификаты , удостоверения :

    Сертификат ГОУ ВПО «Московский Государственный университет экономики, статистики и информатики (МЭСИ)», г. Москва по направлению «Менеджмент».

    Сертификат ГОУ ВПО «Московский Государственный университет экономики, статистики и информатики (МЭСИ)», г. Москва по программе «Эффективное управление финансами высшего учебного заведения».

    Сертификат Корпоративном энергетическом университете, г. Москва по программе повышения квалификации преподавателей Вузов «Экономика и управление в современной электроэнергетике.

Научые интересы : стратегический анализ, инвестиционная политика компаний, финансовая устойчивость, внешнеэкономическая деятельность.
Публикации : автор 23 публикаций, в том числе 1 монографии, 4 методических пособий и 17 научных статей.

Функции: заместитель декана по III-IV курсам и магистратуре.
Контакты : корпус А, ауд. 205

КУРСОВОЙ ПРОЕКТ

Исследование операций в экономике

Введение

Графическое решение задач линейного программирования

Решение задач линейного программирования симплекс-методом

Транспортная задача

Задача о назначениях

Задача о ранце

Заключение

Литература

Введение

Успешная реализация достижений научно-технического прогресса в нашей стране тесным образом связана с использованием экономико-математических методов и средств вычислительной техники при решении задач из различных областей человеческой деятельности. Исключительно важное значение приобретает использование указанных методов и средств при решении экономических задач.

Управление и планирование являются наиболее сложными функциями администрации предприятий, менеджеров, руководителей хозяйственных органов и штабов различного уровня. Характер управления и планирования определяет путь достижения цели и оказывает существенное влияние на качество решения поставленной задачи. В современных условиях повышается ответственность за качество принимаемых управленческих решений. Несколько неудачных управленческих решений и предприятие вступает в стадию банкротства.

В настоящее время существует две группы методов принятия управленческих решений:

) логический (когда решение принимается на основании опыта, интуиции и других личностных качеств лица, принимающего решение);

) формально-логический или формализованный (когда решение принимается на основе изучения предварительно-построенной модели). При этом появляется возможность оценить последствия каждого из вариантов и выбрать наилучший по некоторому критерию. В этой группе методов важную роль играют экономико-математические модели.

Образ реальной действительности, в котором отражены характерные для изучаемого явления признаки или черты реального объекта (оригинала), именуют моделью, а сам процесс построения моделей называют моделированием.

Использование цифровых и знаковых символов позволяет создать категорию моделей, которая включает формально-логические и математические модели.

Любое управление в экономике связано с выработкой и принятием управленческих решений, воплощающихся в управленческие воздействия. Субъекты управления стремятся определить последствия определённого решения. Прежде чем осуществлять управляющее воздействие, принимать окончательное решение, желательно проверить его действенность, послед-ствия, результат. При этом фактически используются логические модели процессов управления, мысленные сценарии их протекания. Но возможности даже квалифицированного, опытного специалиста воспроизвести в своём мозгу картину поведения объекта управления под влиянием управляющих воздействий довольно ограничены. Приходится прибегать к помощи математических расчётов, дополняющих мысленные представления, иллюстрирующих ожидаемую картину управляемого процесса в виде цифр, кривых, графиков, таблиц. Использование математических методов при формировании представлений об экономических объектах и процессах в ходе экономического анализа, прогнозирования, планирования называют применением экономико-математических методов.

Наиболее распространённая форма, основной инструмент воплощения экономико-математических методов - это экономико-математическое моделирование. Математическое моделирование опирается на математическое описание моделируемого объекта (процесса) в виде формул, зависимостей с помощью математических символов, знаков.

Экономико-математическая модель представляет собой формализованное описание управляемого экономического объекта (процесса), включающее заранее заданные параметры, показатели и искомые неизвестные величины, характеризующие состояние объекта, его функционирование, объединённые между собой связями в виде математических зависимостей, соотношений, формул. Модель способна быть только аналогом моделируемой системы, отражающим основные, существенные свойства изучаемой управляемой системы, которые наиболее важны с позиций управления.

Благодаря моделированию субъект управления способен в ходе анализа иметь дело не с реальным объектом управления, а с его аналогом в виде модели. Это значительно расширяет возможности поиска лучших способов управления, не нарушая функционирования реального объекта управления в период выработки управленческих решений. Появляется возможность применить вычислительную технику, использовать компьютеры, для которых математический язык моделей является самым удобным. Благодаря компьютерам можно производить многовариантные модельные расчёты, что повышает шансы на отыскание лучших вариантов.

Для того чтобы принять обоснованное решение необходимо получить и обработать огромное количество информации. Ответственные управленческие решения зачастую связаны с судьбами людей, принимающих их, и с большими материальными ценностями. Но сейчас недостаточно указать путь, ведущий к достижению цели. Необходимо из всех возможных путей выбрать наиболее экономный, учитывающий особенности течения и развития управляемого процесса и наилучшим образом соответствующий поставленной задаче.

Процесс управления производственной системой представляет собой процесс принятия решений, что всегда связано с выбором из множества возможных решений, допускаемых обстоятельствами решаемой задачи, то есть имеется множественность имеющихся вариантов. Выбранное решение должно соответствовать некоторому критерию целесообразности. Этим объясняется связь задач принятия управленческих решений с методами теории оптимизации.

В процессе выработки решений приходится формализовать зависимость между отдельными элементами системы, применять математический аппарат, общие кибернетические принципы и закономерности, то есть использовать экономико-математические методы.

Известно, что экономический эффект от рациональных методов управления и планирования, применяемых в широких масштабах и на высоком уровне, способен в ряде случаев повысить эффект от существенного увеличения мощностей. Возникает потребность в новых математических методах, позволяющих анализировать ритм производства, взаимоотношения между людьми и между коллективами.

Математические машины, внедряемые в производство и управление и используемые в научно-исследовательской работе, создают огромные возможности для развития различных отраслей науки, для совершенствования методов планирования и автоматизации производства. Однако без строгих формулировок задач, без формально-математического описания процессов не может быть достигнут необходимый уровень использования техники. Возникают вопросы, связанные с формализацией физических, экономических, технических и других процессов. Формализация задачи - необходимый этап для перевода каждой прикладной экономической задачи на язык математических машин.

Для постановки задачи математического программирования необходимо сформулировать цель управления и указать ограничения на выбор параметров управления, обусловленные особенностями управляемого процесса. Задача математического программирования сводится к выбору системы параметров, обеспечивающей оптимальное (в заданном смысле) качество процесса управления в рамках сформулированных ограничений.

Всё вышесказанное доказывает необходимость применения экономико-математических методов и моделей в управлении для принятия обоснованных управленческих решений.

В данной курсовой работе даётся представление о возможностях практического использования математического программирования и экономико-математических методов при решении конкретных экономических задач.

.Графическое решение задач линейного программирования.

Решить графически задачу

4x1+x2 → max,

при следующих ограничениях:

x1+7x2≤140

x1+10x2≤150

x1+20x2≤100

Построим область допустимых решений, т.е. решим графически систему неравенств. Для этого построим каждую прямую и определим полуплоскости, заданные неравенствами (полуплоскости обозначены штрихом).

Пересечением полуплоскостей будет являться область, координаты точек которого удовлетворяют условию неравенствам системы ограничений задачи.

Обозначим границы области многоугольника решений.

Рассмотрим целевую функцию задачи F = 4x1+x2 → max.

Построим прямую, отвечающую значению функции F = 0: F = 4x1+x2 = 0. Будем двигать эту прямую параллельным образом. Поскольку нас интересует максимальное решение, поэтому двигаем прямую до последнего касания обозначенной области. На графике эта прямая обозначена пунктирной линией.

Область допустимых решений представляет собой многоугольник

Прямая F(x) = const пересекает область в точке A. Так как точка A получена в результате пересечения прямых (1) и (3), то ее координаты удовлетворяют уравнениям этих прямых:

x1+7x2=140

x1+20x2=100

Решив систему уравнений, получим: x1 = 5.7534, x2 = 3.5616

Откуда найдем максимальное значение целевой функции:

(X) = 4*5.7534 + 1*3.5616 = 26.5753

2. Решение задач линейного программирования симплекс - методом.

Решим прямую задачу линейного программирования симплексным методом, с использованием симплексной таблицы.

Определим максимальное значение целевой функции F(X) = 5x1 + 5x2 + 11x3+9 при следующих условиях-ограничений.

При вычислениях значение Fc = 9 временно не учитываем.

линейный программирование математический экономический

x1 + x2 + x3 + x4≤0

x1 + 5x2 + 3x3 + 2x4≤0

x1 + 5x2 + 10x3 + 15x4≤0

Для построения первого опорного плана систему неравенств приведем к системе уравнений путем введения дополнительных переменных (переход к канонической форме).

В 1-м неравенстве смысла (≤) вводим базисную переменную x5. В 2-м неравенстве смысла (≤) вводим базисную переменную x6. В 3-м неравенстве смысла (≤) вводим базисную переменную x7.

x1 + 1x2 + 1x3 + 1x4 + 1x5 + 0x6 + 0x7 = 0

x1 + 5x2 + 3x3 + 2x4 + 0x5 + 1x6 + 0x7 = 0

x1 + 5x2 + 10x3 + 15x4 + 0x5 + 0x6 + 1x7 = 0

Матрица коэффициентов A = a(ij) этой системы уравнений имеет вид:

11111007532010351015001

Базисные переменные это переменные, которые входят только в одно уравнение системы ограничений и притом с единичным коэффициентом.

Решим систему уравнений относительно базисных переменных: x5, x6, x7

Полагая, что свободные переменные равны 0, получим первый опорный план: X1 = (0,0,0,0,0,0,0)

Базисное решение называется допустимым, если оно неотрицательно.

БазисBx1x2x3x4x5x6x7x501111100x607532010x70351015001F(X0)0-5-5-110000

Переходим к основному алгоритму симплекс-метода.

Итерация №0.

Проверка критерия оптимальности.

Текущий опорный план неоптимален, так как в индексной строке находятся отрицательные коэффициенты.

Определение новой базисной переменной.

В качестве ведущего выберем столбец, соответствующий переменной x3, так как это наибольший коэффициент по модулю.

Определение новой свободной переменной.

Вычислим значения Di по строкам как частное от деления: bi / ai3

и из них выберем наименьшее:(0: 1, 0: 3, 0: 10) = 0

Следовательно, 1-ая строка является ведущей.

Разрешающий элемент равен (1) и находится на пересечении ведущего столбца и ведущей строки.

БазисBx1x2x3x4x5x6x7minx5011111000x6075320100x703510150010F(X1)0-5-5-1100000

Пересчет симплекс-таблицы.

Формируем следующую часть симплексной таблицы.

Вместо переменной x5 в план 1 войдет переменная x3.

Строка, соответствующая переменной x3 в плане 1, получена в результате деления всех элементов строки x5 плана 0 на разрешающий элемент РЭ=1

На месте разрешающего элемента в плане 1 получаем 1.

В остальных клетках столбца x3 плана 1 записываем нули.

Таким образом, в новом плане 1 заполнены строка x3 и столбец x3.

Все остальные элементы нового плана 1, включая элементы индексной строки, определяются по правилу прямоугольника.

Для этого выбираем из старого плана четыре числа, которые расположены в вершинах прямоугольника и всегда включают разрешающий элемент РЭ.

НЭ = СЭ - (А*В)/РЭ

СТЭ - элемент старого плана, РЭ - разрешающий элемент (1), А и В - элементы старого плана, образующие прямоугольник с элементами СТЭ и РЭ.

Представим расчет каждого элемента в виде таблицы:

Bx 1x 2x 3x 4x 5x 6x 70: 11: 11: 11: 11: 11: 10: 10: 10-(0 3):17-(1 3):15-(1 3):13-(1 3):12-(1 3):10-(1 3):11-(0 3):10-(0 3):10-(0 10):13-(1 10):15-(1 10):110-(1 10):115-(1 10):10-(1 10):10-(0 10):11-(0 10):10-(0 -11):1-5-(1 -11):1-5-(1 -11):1-11-(1 -11):10-(1 -11):10-(1 -11):10-(0 -11):10-(0 -11):1

Получаем новую симплекс-таблицу:

БазисBx1