Ликвидация бизнеса. Приказы. Оборудование для бизнеса. Бухгалтерия и кадры
Поиск по сайту

Физико-технические основы архитектурно-строительного проектирования. Физико-технические основы проектирования зданий и их ограждающих конструкций Проектирование зданий как искусственной среды жизнедеятельности должно обеспечивать

Проектирование зданий должно обеспечивать комфортное состояние искусственной среды жизнедеятельности. Правильное решение рассмотренных выше задач архитектурного проектирования еще не в полной мере обеспечивает комфорт внутренней среды. В здании необходимо обеспечить такие физические параметры внутренней среды, которые создают физиологическое ощущение комфорта. Это обеспечение температурно-влажностного режима, оптимальных параметров воздушной среды, создание светового и акустического комфорта, инсоляции, солнцезащиты и звукоизоляции помещений. Это такие факторы, которые непосредственно ощущаются человеком. Существуют и такие физические факторы, которые ощущаются человеком только в процессе длительного пребывания в помещении. Эти факторы, как правило, малоисследованы. К ним относятся проникновение электромагнитного излучения через конструкции, остаточная минимальная радиоактивность строительных материалов, геопатогенные зоны на территории и в помещениях, проникновение радона из грунта в помещения. Из этих факторов только последний учитывается нормами СНиП.

Значимость физических факторов различна. Но достаточно несоблюдения хотя бы одного из них (например, звукоизоляции), чтобы комфортное состояние среды превратилось в дискомфортное. Поэтому комфорт внутренней среды определяется как совокупность оптимальных уровней всех се характеристик, не вызывающих чрезмерного напряжения регуляторных механизмов организма человека.

Основы строительной климатологии. Учет климата при строительстве

Слово "климат" греческое. В переводе оно обозначает "наклон", так как в Древней Греции считали, что основной показатель климата – температура воздуха – зависит от наклона солнечных лучей к земной поверхности (рис. 15.1). Предполагалось, что чем меньше угол Z0, тем больше температура поверхности Земли и воздуха. Поэтому климат делился по широтным полосам Земли на холодный, умеренный и жаркий.

Рис. 15.1.

Z 0 – зенитное расстояние Солнца, град; Н 0 – угловая высота Солнца, град

Однако в пределах одной и той же широты могут быть разные климаты. Например, на одной широте находятся Лондон, Копенгаген, Москва, Екатеринбург, Новосибирск, Нижнеангарск, Бодайбо, Аян (на берегу Охотского моря). Различие климата Лондона и Бодайбо разительно, хотя приход солнечной радиации на границу атмосферы в этих местах один и тот же. На экваторе на побережье Индийского океана климат тропический влажный. В глубине Африки на той же нулевой широте в горах Ливингстона в мае на крышах выпадает иней. Климат сухой, средний между субтропиками и умеренным климатом.

Первая книга о климате ("Метеорология", II в. до н.э.) была написана древнегреческим ученым Аристотелем. Первые научные исследования о климате и метеорологии в России проводил М. В. Ломоносов. Он объяснил влияние морских течений на климат (теплого течения Гольфстрим на Западе в Атлантическом океане и холодного течения Кюросао на Востоке), причину суровости климата Сибири зимой, зональности климата по высоте в горных районах.

Методы строительной климатологии включают метеорологические наблюдения на метеостанциях, актинометрических станциях, фиксирующих данные о солнечной радиации, и геофизических станциях, где кроме меторологических и актинометрических наблюдений ведутся сейсмологические записи колебаний земной коры. Кроме того, используются расчетные методы, учитывающие локальные наблюдения и распространяющие их на требуемые параметры. Например, наблюдения солнечной радиации с помощью световых эквивалентов можно пересчитать в данные об освещенности.

Климатические факторы, влияющие на проектирование и строительство зданий, следующие:

  • 1) температура наружного воздуха;
  • 2) влажность наружного воздуха;
  • 3) ветер, его направление и скорость;
  • 4) солнечная радиация;
  • 5) дневной и годовой ход естественной освещенности и яркости неба;
  • 6) облачность и вероятность пасмурного, ясного и полуясного неба;
  • 7) статистика дождевых и снеговых осадков, снеговые нагрузки, вероятность и объем снегопереноса;
  • 8) глубина промерзания грунтов.

Эти сведения собраны в СНиП 23-01-99 "Строительная климатология", а также в различных климатических справочниках.

Температура и влажность воздуха – параметры, в наибольшей степени характеризующие климат местности. Для основных городов России эти параметры представлены в СНиП "Строительная климатология". Для характеристики погоды наибольшее значение имеет средняя температура в течение рабочего дня:

где – средняя амплитуда колебаний температуры в течение суток для данного месяца (рис. 15.2). К сожалению, в СНиП "Строительная климатология" эта величина не приводится. Поэтому при климатическом анализе надо пользоваться хорошим климатическим справочником СНиП П-А.6-72.

В отношении воздействия на человека характерны следующие виды погоды:

Рис. 15.2.

Кроме того, для многих районов целесообразно выделение очень холодной (< –12°С) и очень жаркой (выше +32°С) погоды, неблагоприятно воздействующей на человека.

Пример климатического анализа г. Сочи приведен в табл. 15.1.

Таблица 15.1

Пример климатического анализа г. Сочи (Краснодарский край)

Тип погоды

Примечание

Теплая (Т)

Жаркая (Ж)

Очень жаркая (ОЖ)

Жаркая (Ж)

Сентябрь

Теплая (Т)

Позволяет использовать открытые помещения

Как следует из табл. 15.1, в г. Сочи в домах не требуется отопление. В холодные дни, которые случаются как отклонение от средних условий, в квартирах достаточно иметь электрообогреватели, камины и т.п. Зато искусственное охлаждение и солнцезащита требуются в течение четырех месяцев в году.

В табл. 15.2 приведен пример климатического анализа г. Якутска.

Таблица 15.2

Пример климатического анализа г. Якутска (Республика Саха–Якутия)

Тип погоды

Примечание

холодная

Холодная

Требуется отопление

Прохладная

Теплая (Т)

Позволяет использовать открытые помещения

Очень жаркая (ОЖ)

Требуются солнцезащита и охлаждение

Сентябрь

Теплая (Т)

Позволяет использовать открытые помещения

Прохладная

Требуется отопление

Холодная

холодная

Требуются специальные мероприятия и отопление

Как следует из табл. 15.2, климат в г. Якутске резко континентальный. В течение семи месяцев в году требуется отопление. Причем в течение трех месяцев в году погода очень холодная, неблагоприятно действующая на человека. В течение трех месяцев погода очень жаркая, требующая ограничения перегрева и искусственного охлаждения. Все это необходимо учитывать при проектировании, применять двойные тамбуры, закрытые переходы между домами.

Климатический анализ ведется "от общего к частному", т.е. от оценки фоновых закономерностей, характерных для больших территорий, к оценке микроклимата конкретных участков строительства, с учетом рельефа, растительности, водных пространств, характера застройки, которые могут сильно влиять на фоновые характеристики, принимающиеся по климатическим справочникам.

Климат в центральной части России – континентальный. Он характеризуется сравнительно жарким и умеренно сухим летом и достаточно продолжительной и сухой зимой. Климат Сибири – резко континентальный с суровой и продолжительной зимой при небольшой влажности воздуха. Лето – менее продолжительное, но жаркое и достаточно влажное. В Забайкалье продолжительность солнечного сияния – наибольшая в России. Климат – резко континентальный и сухой. Климат предгорий Северного Кавказа – жаркий и сухой летом и с мягкой непродолжительной зимой. Жаркого влажного климата на территории современной России практически нет. На территории бывшего СССР такой климат (влажные субтропики) имеет место только в районе г. Батуми (Грузия) и на Ленкоранском полуострове в Каспийском море (Азербайджан).

Климатический анализ позволяет определить тип здания, который должен быть запроектирован в данной местности с учетом климата.

При оценке действия солнечной радиации учитывается инсоляция квартир, т.е. облучение их прямыми солнечными лучами. Прямые солнечные лучи обладают оздоровительным и бактерицидным

свойствами. Для обеспечения оздоровительного воздействия инсоляции санитарными нормами устанавливается необходимое время ежедневной непрерывной инсоляции для определенного периода года. Исходя из этого условия, не допускается ориентировать окна всех жилых комнат квартиры в пределах сектора горизонта от 310° до 50° во всех климатических районах. При двухсторонней ориентации жилых комнат в указанный сектор допускается ориентировать не более одной жилой комнаты в двухкомнатных квартирах; двух жилых комнат в трехкомнатных и четырехкомнатных квартирах. Инсоляция может оказывать и отрицательное влияние на микроклимат помещений. Тепловое воздействие инсоляции в летнее время, особенно в южных районах, может привести к перегреву человека

и помещений. Солнечные лучи, проникающие в помещение, отдают тепло поверхностям пола, стен, оборудования, которые в свою очередь становятся источниками теплового излучения.

В практике строительного проектирования для обеспечения требований инсоляции получили рас-

пространение два типа жилых секций. Первый тип допускает ориентировать фасады здания в любых направлениях. Второй тип допускает ориентацию одного из фасадов здания на север при этом одна или несколько жилых комнат квартиры обязательно должны выходить на южную сторону.

Элементы гражданских зданий:

1. Основания и фундаменты

Основание - массив грунта, расположенный под фундаментом и воспринимающий нагрузку от здания.

Фундаменты должны удовлетворять требованиям: прочности, устойчивости на опрокидывание и скольжение в плоскости подошвы, долговечности, сопротивлению влияния грунтовых вод, индустриальности, экономичности и др.

2. Стены и внутренние опоры

3. Перекрытия и полы

Перекрытия должны удовлетворять требованиям прочности, жёсткости, огнестойкости, долговечности, звуко- и теплоизоляции, если они отделяют отапливаемые помещения от неотапливаемых или от внешней среды.

Полы, применяемые в гражданских зданиях: монолитные и штучные. Особую группу составляют полы из рулонных материалов. Полы устраивают по перекрытиям или непосредственно по грунту (полы первого этажа или подвала). Полы должны обладать хорошим сопротивлением различным механическим воздействиям, малым пылеобразованием, лёгкой очисткой, красивый вид, лёгкий ремонт и др.



4. Крыша и кровли

Крыша имеет несущую и ограждающую части. Ограждающая часть состоит из кровли – верхней водонепроницаемой оболочки крыши, основания под крышу в виде обрешётки или дощатого настила или цементного слоя по железобетонной основе. Крыша должна быть прочной, устойчивой, долговечной, водонепроницаемой, лёгкой, стойкой против атмосферных и химических воздействий.

5. Лестницы должны удовлетворять требованиям пропускной способности, пожарной безопасности и гигиены, неутомляемость людей при подъёме. Лестница состоит из маршей и площадок в части здания – лестничная клетка.

6. Перегородки

К перегородкам предъявляют требования: небольшая масса и толщина, огнестойкость и индустриальность изготовления.

Перегородки: межкомнатные, межквартирные и для санитарно-кухонных узлов.

7. Окна и двери

Заполнение оконных проёмов состоит из оконных коробок, остеклённых переплётов и подоконных досок. Оконные переплёты: створные, имеющие открывающиеся части – створки, и глухие неоткрывающиеся.

Двери состоят из дверных коробок и открывающихся дверных полотен. По числу дверных полотен: двери однопольные, двупольные, полуторные (два полотна неравной ширины).

8. Конструкции спец. элементов зданий

А) Балконы, эркеры, лоджии

Б) Отопление

Печное отопление – в зданиях старой постройки, в современных допускается при высоте здания не более двух этажей.

В) Вентиляция

В жилых зданиях предусматривают вытяжную вентиляцию с естественной тягой. Форточки, вытяжные каналы кухонь, ванных или объединённых сан.узлов.

Г) Санитарно-технические блоки и кабины

Все системы сан.-технич. трубопроводов, идущих к кухням и сан.узлам, монтируют из укрупнённых панелей и блоков.

В зависимости от условий могут быть приняты системы: каркасные, панельные и каркасно-панельные. В каркасной схеме различают схемы: с продольным стоечно-ригельным каркасом, поперечным стоечно-ригельным каркасом и схему со смешанным каркасом. В домах с каркасными конструкциями несущей является система колонн и прогонов. Бескаркасная система характеризуется тем, что ряд конструктивных элементов совмещает в себе несущие и ограждающие функции.



По объёмно-планировочным решениям гражданские здания могут быть:

- одноквартирные

Блокированные

Секционные

Галерейные и др.

Одноквартирные дома : дом с квартирой, расположенной в одном уровне (одноэтажный), и квартирой, расположенной в двух уровнях (двухэтажный

Двухквартирный дом - объединение двух одноквартирных домов, имеющих одну общую стену. Двухквартирные дома могут решаться как в одном, так и в двух уровнях.

Блокированные дома состоят из нескольких примыкающих друг к другу изолированных блоков –квартир с отдельным выходом из каждой квартиры на приквартирный участок.

Секционные дома. Жилая секция многоэтажного дома представляет собой ячейку, состоящую из нескольких квартир, объединённых лестнично-лифтовым узлом.

Односекционные дома. Представляют собой комплекс квартир, расположенных вокруг одного узла вертикальных коммуникаций (лестница и лифты). Коридорные дома. Квартиры располагаются вдоль коридора, как правило, по его обе стороны. По этажам соединяются лестницами.

Галерейные дома. Все квартиры размещаются вдоль поэтажных открытых галерей, располагаемых с одной стороны дома. Вертикальная связь между поэтажными галереями – лестницами и лифтами.

Общие требования к гражданским зданиям.

1. Функциональная целесообразность – обеспечивается путём создания наиболее удобных условий пребывания.

2. Архитектурно-художественная выразительность – отделка интерьера внешнего вида архитектурного здания

3. Прочность определяется прочностью конструкций и материалов в их взаимосвязи. Эти связи обеспечивают пространственную жёсткость.

4. Устойчивость обеспечивается целесообразным взаимным сочетанием и расположением составных элементов конструкций зданий в соответствии с величиной и напряжением внешних усилий, а также зависит от надёжности основания.

5. Целесообразность технических решений – выбор строительных материалов в соответствии с архитектурным замыслом

6. Надёжность – способность здания безотказно выполнять заданные функции в течение всего периода эксплуатации

7. Долговечность (3 степени):

1. не менее 100 лет

2. около 50 лет

3. менее 20 лет

8. Огнестойкость - 3 степени.

Минимальный предел огнестойкости – время в часах, в течение которого данная конструкция сопротивляется действию огня или высокой температуры до появления одного из следующих признаков:

А) Образование в конструкции сквозных трещин или отверстий, через которые проникают продукты горения

Б) Потеря конструкцией несущей способности

9. Противопожарная безопасность.

10. Требование экономичности строительства –на неё влияют:

Единовременные капитальные вложения

Эксплуатационные расходы

Стоимость износа

Стоимость восстановления здания

Общественные здания должны соответствовать определённым параметрам по размерам и форме, состоянию воздушной среды (микроклимату), звуковому и световому режимам и условиям видимости и зрительного восприятия.

Размер и форма зависят от особенностей функционального процесса, для которого предназначены здание и помещения, и от количества людей, которые будут там находиться (нормы по площади и объёму на 1 человека).

Требования к состоянию воздушной среды(температуре, влажности, степени чистоты воздуха и скорости его движения) обеспечиваются наружными ограждающими конструкциями и центральными системами отопления и искусственной приточно-вытяжной вентиляцией или системами кондиционирования воздуха. Также за счёт естественного проветривания через окна.

Усиленную приточно-вытяжную вентиляцию устраивают в помещениях с выделением избыточной влаги, вредностей или тепла, а в зальных помещениях, где может находиться большое количество людей, применяют самостоятельные системы приточно-вытяжной вентиляции или системы кондиционирования воздуха, не связанные с системами других помещений.

Требуемый звуковой режим в помещениях общественных зданий характеризуется условиями слышимости в помещении, т. е. помещения должны быть надёжно защищены как от внешних, так и от внутренних звуков (шумов), мешающих выполнению функционального процесса.

Звуковой режим в общественных зданиях и их помещениях обеспечивается наружными ограждающими конструкциями, имеющими хорошую звукоизоляцию от внешних шумов, снижением уровня внутренних шумов, т. е. с использованием звукопоглощающих, звукоотражающих и звукоизолирующих материалов и конструкций, а также применением специальных акустических устройств и приёмов.

Кроме конструктивных приёмов обеспечения в общественных зданиях и их помещениях требуемого звукового режима применяют и приёмы объёмно-планировочных решений для обеспечения звукового режима. Так, например, в школах классы размещают изолированно или в отдельных блоках от шумных помещений, а для звукоизоляции зданий от внешних шумов их можно удалять, например, от автомагистралей или отделять зелёными насаждениями.

Требуемый световой режим в помещениях общественных зданий характеризуется условиями работы органов зрения, соответствующими функциональному назначению помещения. Помещения общественных зданий, предназначенные для длительного пребывания людей, должны обеспечиваться естественным освещением. Требуемый уровень естественного освещения помещений зависит от их назначения, особенностей выполняемого в них функционального процесса, а также характера и точности проводимых в помещении работ и обеспечивается размерами оконных проёмов и световых фонарей, их ориентацией по сторонам горизонта, изготовлением стен из прозрачного бетона. В тёмное время суток применяют искусственное освещение. Оно допустимо только в тех помещениях, где естественный свет не нужен, а пребывание людей кратковременно (кинотеатры, театры, цирки, концертные залы и др.).

Требования по инсоляции помещений общественных зданий зависят от их функционального назначения, контингента людей, находящихся в помещении, и климатических условий. Ориентация окон по сторонам горизонта, их размеры и солнцезащитные устройства должны обеспечивать требуемое (или допустимое) время инсоляции помещений. Например, для основных помещений детских и лечебно-профилактических учреждений выполнение инсоляционного режима обязательно в полном объёме, т. е. их окна желательно ориентировать на юг, а для школьных классов, аудиторий, кабинетов черчения и рисования и других аналогичных помещений на инсоляцию вводятся определённые ограничения. Видимость и зрительное восприятие в помещениях общественных зданий обусловлены необходимостью видеть плоские или объёмныепредметы, и обеспечиваются за счёт светового режима и взаимного расположения зрителя и воспринимаемого им объекта.

Билет №7

Крупноблочные здания. Конструктивные схемы и системы крупноблочных зданий и обеспечение их пространственной жесткости.

Для повышения производительности труда при устройстве стен вместо мелкоразмерных стеновых материалов (кирпича, мелких камней) применяются крупные блоки из которых обирают стены здания. Стены из крупных блоков по высоте этажа делятся на 2-4 яруса, а по длине блоки имеют размеры соответствующие размерам подоконной части стены и простенкам. Дома со стенами из крупных блоков имеют конструктивные схемы с продольными несущими стенами при высоте домов до 5 этажей, а для домов большей этажности применяют конструктивные схемы с поперечными несущими стенами с большим или смешанным шагом. Возможны также конструктивные схемы с наружными блочными несущими стенами и внутренним каркасом. Конструктивные системы в крупноблочном домостроении являются пространственными коробчатыми, состоящими из плоских вертикальных несущих элементов – стен и горизонтальных несущих элементов – перекрытий из плит-настилов. В домах с внутренним каркасом имеет место комбинация коробчатой и стоечно-балочной конструктивных систем. Крупноблочные дома являются полносборными, так как все их конструктивные элементы выполняют из крупноразмерных конструкций и деталей заводского изготовления, т.е. стены – из крупных блоков, перекрытия – из плит-настилов, перегородки – крупнопанельные, лестницы - крупноблочные или крупнопанельные и другие крупноразмерные конструктивные элементы. Пространственная жесткость крупноблочных домов обеспечивается совместной работой продольных и поперечных стен за счет прочного соединения в местах пересечений и примыканий этих элементов один к другому. По эксплуатационным показателям крупноблочные стены не уступают кирпичным.

Трехслойные монолитные и сборно-монолитные бетонные стены

Трехслойные сборно-монолитные стены состоят из внутреннего несущего бетонного монолитного слоя, толщина которого определяется из условия обеспечения несущей способности, но не менее 120 мм, и наружного слоя из двухслойных сборных элементов, выполняющего теплозащитные и декоративные функции. Сборные наружные теплозащитно-декоративные элементы изготавливают в виде двухслойных панелей с утепляющим слоем с внутренней стороны или в виде бетонных офактуренных снаружи плит с прикрепленным (приклеенным) эффективным утеплителем.

Наружный сборный слой трехслойных стен, как и в двухслойных сборно-монолитных стенах, может выполнять функции наружной опалубки и иметь арматурные выпуски для анкеровки к монолитному слою, или он может крепиться к внутреннему монолитному слою арматурными выпусками или закладными деталями.

Трехслойные монолитные стены состоят из двух слоев из плотного бетона и слоя эффективного утеплителя между ними, и в конструктивном исполнении они могут быть с гибкими или жесткими связями между бетонными слоями (аналогично трехслойным бетонным стеновым панелям). Толщина внутреннего бетонного слоя не менее 120 мм, а наружного – не менее 60 мм. Толщина утепляющего слоя устанавливается расчетом на теплозащиту. В конструкции таких стен в качестве эффективного утеплителя необходимо применять жесткий плитный материал, например, пенополистирол. Плитный утеплитель между наружной и внутренней опалубкой закрепляют арматурными с антикоррозионной защитой стержнями-фиксаторами, выполняющими в отформованной стене роль гибких связей между бетонными слоями.

При устройстве трехслойных монолитных стен с жесткими связями между бетонными слоями утеплитель в опалубке закрепляют как и в варианте стен с гибкими связями, но по длине стены утеплитель устанавливают с вертикальными разрывами в 40 – 50 мм, в которые заводят арматурные сетки для армирования жестких связей.

Эвакуация людей из зданий

Безопасность людей в зданиях в случае пожара обеспечивается: во-первых, приданием частям здания требуемой огнестойкости, во-вторых, планировочной организацией путей эвакуации.

Производиться при аварийных случаях. При пожаре: продолжительность эвакуации зависит от задымленности и огнестойкости здания. Эвакуация людей из здания или сооружения состоит из двух этапов: в пределах здания и вне здания. Ширина коридора рассчитывается в соответствии с интенсивностью людских потоков, но должно быть не менее 1,5 м для главных и 1,25 м – для второстепенных коридоров в общественных зданиях. Двери в коридорах открываются по пути эвакуации. Пропускная способность дверей 1,2 метра составляет 50-60 чел/мин. Ширину лестничных маршей и дверей эвакуационных выходов рекомендуется принимать не более 2,4 м, чтобы набежать нарушения устойчивости потока эвакуирующихся людей. При необходимости проектирования лестничных маршей большей ширины желательно предусматривать их разделение по ширине промежуточными перилами с поручнем. Для лестниц с шириной марша более 1,5 м желательно предусматривать поручни с двух сторон. Рекомендуется располагать лестничную клетку со входами через наружную воздушную зону. Для эвакуации людей из здания при аварийных ситуациях кроме основных и вспомогательных необходимо устраивать аварийные лестницы.

Устройство порогов на путях эвакуации людей не допускается.

Пути эвакуации должны быть освещены естественным светом, их ограждения должны иметь повышенную огнестойкость.

По эвакуационным требованиям все двери тамбура должны открываться наружу. В зданиях с интенсивными людскими потоками допускается открывание дверей на 90° в обе стороны от плоскости их проемов.

Различают обычную и аварийную эвакуацию. Во всех случаях люди из здания должны эвакуироваться быстро и беспрепятственно наиболее простыми и предельно короткими путями.

Билет №8

Разрезка крупноблочных стен

Разрезка-это система раскладки блоков в пределах высоты этажа. Применяют следующие виды разрезки наружных несущих крупноблочных стен: двухрядная, трехрядная и четырехрядная, состоящие из трех видов блоков - подоконных, простеночных и перемычечных. Для самонесущих наружных крупноблочных стен в домах с поперечными несущими стенами применяют блоки из автоклавного ячеистого бетона с двухрядной разрезкой, включающей подоконно-перемычечные и простеночные блоки При двухрядной разрезке наружных несущих блочных стен подоконные и простеночные блоки существенно различаются по массе (масса простеночного блока значительно больше массы подоконного блока), а выбор подъемно-монтажных средств выполняют, исходя из массы более массивного монтируемого элемента, т.е. в этом случае требуется подъемно-монтажное средство большей грузоподъемности. При трех- и четырехрядной разрезке различие в массе между блоками уменьшается и, следовательно, упрощается выбор подъемно-монтажных средств. Независимо от вида разрезки во всех случаях должна обеспечиваться перевязка вертикальных швов-стыков в пределах этажа перемычечными блоками на участках стен с оконными проемами и поясными блоками на участках глухих стен

Рис. 2.2. Схемы разрезок наружных крупноблочных стен на блоки: а – четырёхрядная разрезка; б – трёхрядная разрезка; в – двухрядная разрезка; г – двухрядная разрезка для самонесущих стен крупноблочных домов; Н – высота этажа

Внутренние монолитные стены

В домах с монолитными и сборно-монолитными наружными стенами внутренние несущие стены выполняют монолитными однослойными толщиной не менее160 мм из тяжелого бетона и толщиной не менее 180 мм из легкого конструктивного бетона на пористых заполнителях (керамзите, аглопорите или др.). В домах высотой до 16 этажей внутренние монолитные стены, как правило, не имеют расчетного вертикального армирования, но отдельные участки стен имеют расчетное или конструктивное армирование.

Как и в наружных стенах расчетное армирование в виде плоских или пространственных каркасов имеют надпроемные участки внутренних стен, а конструктивное армирование в виде вертикальных пространственных каркасов устраивают в местах взаимных пересечений внутренних стен и их примыканий к наружным стенам, и в виде плоских каркасов – у граней проемов. Конструктивное армирование зон примыкания одной стены к другой устраивают для ограничения трещинообразования и ширины раскрытия трещин в этих зонах.

В домах высотой более 16 этажей и при строительстве на просадочных грунтах, в сейсмоопасных районах и на подрабатываемых территориях внутренние монолитные стены имеют конструктивное или расчетное вертикальное армирование, вид которого зависит от величины воспринимаемых нагрузок и технологических особенностей устройства монолитных стен.

3. Здания обсл. общ. центров местного значения. Детские учреждения, общ. центры сельских посёлков

Детские учреждения делятся на: детские ясли до 3ёх лет, детские сады. Кол-во мест в детских учреждениях рассчитывают в соответствии с кол-вом обслуживаемого населения, по норме: 30-40 мест в яслях и 40-50 мест в садах. По назначению выделяют детские учреждения общего типа, для детей с нормальным физическим и умтвенным развитием; учреждения спец назначения и санитарно-оздоровительного типа для нездоровых или ослабленных детей; дома ребёнка для детей немеющих родителей. основным типом общеобразовательных школя являются 11-тилетние, дающие среднее образование (дневные, вечерние школы, гимназии и др.). Здания детских учреждений имеют объемно-планировочную ячейковую структуру и их проектируют высотой в 1 или 2 этажа по бескаркасной или каркасной конструктивным схемам. Поскольку детские ясли-сады строят одновременно с жилыми зданиями, то целесообразно при их проектировании и строительстве использовать по возможности те же конструкции, что и в жилых зданиях

Основными помещениями общественных центров сельских посёлков являются:

1)универсальный зал для собраний, демонстраций кинофильмов, выступлений артистов и др.; 2)магазин с торговым залом; 3)столовая с кухней и обеденнымзалом; 4)почтовоеотделение; 5)медицинский пункт; 6)приемный пункт прачечной и комбинатабытовогообслуживания; 7)административные помещения и др.,т.е. предусматриваются помещения первостепенного общественного бытового и культурного обслуживания населения сельского поселка. Здания общественных центров сельских поселков проектируют бескаркасными или каркасными по смешанной ячейково-зальной объемно-планировочной структуре с асимметричной компоновкой в плане

Физико-технические основы проектирования общественных зданий.

Двухслойные сборно-монолитные бетонные стены.

БИЛЕТ

Слоистые стены в монолитном исполнении нетехнологичны и поэтому их чаще всего выполняют сборно-монолитными. Двухслойные сборно-монолитные стены состоят из несущего монолитного бетонного слоя и сборного утепляющего слоя. Несущий слой устраивают из тяжёлого или лёгкого конструктивного бетона толщиной не менее 120 мм. Этот слой стены тоже выполняют захватками высотой на этаж. Утепляющий слой может располагаться с наружной или внутренней стороны несущего монолитного бетонного слоя в зависимости от природно-климатических условий.

При наружном расположении утепляющего слоя его выполняют из сборных офактуренных декоративно-теплоизоляционных плит-панелей или плит из теплоизоляционного бетона высотой на этаж. В этом случае наружный утепляющий слой также выполняет роль наружной опалубки и его элементы снабжают арматурными выпусками для анкеровки к внутреннему несущему монолитному бетонному слою (рис. 6.1 б). Если же утепляющий слой из сборных элементов крепится к уже выполненному несущему монолитному слою, то монолитный слой и элементы утепляющего слоя снабжаются закладными деталями или выпусками арматуры для крепления одного слоя к другому.

Внутреннее расположение утепляющего слоя допускается в районах с мягким климатом, т. е. с положительными значениями расчётных температур наружного воздуха в зимнее время. Такой внутренний слой выполняют из теплозащитных плит, панелей или блоков автоклавного твердения (пенобетон, газосиликатобетон), из пеностекла или других материалов и опирают на несущие элементы перекрытий.

Общественные здания должны соответствовать определённым параметрам по размерам и форме, состоянию воздушной среды (микроклимату), звуковому и световому режимам и условиям видимости и зрительного восприятия.

Размер и форма зависят от особенностей функционального процесса, для которого предназначены здание и помещения, и от количества людей, которые будут там находиться (нормы по площади и объёму на 1 человека).

Требования к состоянию воздушной среды(температуре, влажности, степени чистоты воздуха и скорости его движения) обеспечиваются наружными ограждающими конструкциями и центральными системами отопления и искусственной приточно-вытяжной вентиляцией или системами кондиционирования воздуха. Также за счёт естественного проветривания через окна.

Усиленную приточно-вытяжную вентиляцию устраивают в помещениях с выделением избыточной влаги, вредностей или тепла, а в зальных помещениях, где может находиться большое количество людей, применяют самостоятельные системы приточно-вытяжной вентиляции или системы кондиционирования воздуха, не связанные с системами других помещений.



Требуемый звуковой режим в помещениях общественных зданий характеризуется условиями слышимости в помещении, т. е. помещения должны быть надёжно защищены как от внешних, так и от внутренних звуков (шумов), мешающих выполнению функционального процесса.

Звуковой режим в общественных зданиях и их помещениях обеспечивается наружными ограждающими конструкциями, имеющими хорошую звукоизоляцию от внешних шумов, снижением уровня внутренних шумов, т. е. с использованием звукопоглощающих, звукоотражающих и звукоизолирующих материалов и конструкций, а также применением специальных акустических устройств и приёмов.

Кроме конструктивных приёмов обеспечения в общественных зданиях и их помещениях требуемого звукового режима применяют и приёмы объёмно-планировочных решений для обеспечения звукового

режима. Так, например, в школах классы размещают изолированно или в отдельных блоках от шумных помещений, а для звукоизоляции зданий от внешних шумов их можно удалять, например, от автомагистралей или отделять зелёными насаждениями.

Требуемый световой режим в помещениях общественных зданий характеризуется условиями работы органов зрения, соответствующими функциональному назначению помещения. Помещения общественных зданий, предназначенные для длительного пребывания людей, должны обеспечиваться естественным освещением. Требуемый уровень естественного освещения помещений зависит от их назначения, особенностей выполняемого в них функционального процесса, а также характера и точности проводимых в помещении работ и обеспечивается размерами оконных проёмов и световых фонарей, их ориентацией по сторонам горизонта, изготовлением стен из прозрачного бетона. В тёмное время суток применяют искусственное освещение. Оно допустимо только в тех помещениях, где естественный свет не нужен, а пребывание людей кратковременно (кинотеатры, театры, цирки, концертные залы и др.).

Требования по инсоляции помещений общественных зданий зависят от их функционального назначения, контингента людей, находящихся в помещении, и климатических условий. Ориентация окон по сторонам горизонта, их размеры и солнцезащитные устройства должны обеспечивать требуемое (или допустимое) время инсоляции помещений. Например, для основных помещений детских и лечебно-профилактических учреждений выполнение инсоляционного режима обязательно в полном объёме, т. е. их окна желательно ориентировать на юг, а для школьных классов, аудиторий, кабинетов черчения и рисования и других аналогичных помещений на инсоляцию вводятся определённые ограничения. Видимость и зрительное восприятие в помещениях общественных зданий обусловлены необходимостью видеть плоские или объёмныепредметы, и обеспечиваются за счёт светового режима и взаимного расположения зрителя и воспринимаемого им объекта.

Состояние воздушной среды производственных помещений характеризуется температурой, влажностью и скоростью движения воздуха, а также содержанием в нем химических и механических (аэрозолей) примесей. Воздушная среда должна по своим параметрам отвечать технологическим и санитарногигиеническим требованиям. На ее параметры влияют различные внешние и внутренние факторы, в том числе выделения тепла, влаги, химических веществ, пыли, сопровождающие технологический процесс.

Метеорологические условия . Воздух, как среда, окружающая технологическое оборудование и работающих в производственном помещении, не должен влиять в отрицательном смысле на происходящий технологический процесс, но главное – воздух должен отводить от человеческого организма то тепло, которое им выделяется.

Отдача тепла организмом, как и любого нагретого тела, происходит за счет конвекции окружающим воздухом и излучения, а также за счет испарения влаги с кожного покрова человека. Известно, что интенсивная конвекция может происходить лишь при наличии достаточной разности температур тела человека и окружающего воздуха.

Теплоотдача излучением также зависит от разности температур человеческого тела и окружающих его предметов (оборудования, ограждающих конструкций и пр.), температура которых во многих случаях близка к температуре воздуха помещения.

Следовательно, температура воздуха в помещении должна быть тем ниже, чем больше выделяет человеческий организм тепла. При работе, не требующей значительного физического напряжения, температура воздуха должна быть более высокой, при тяжелых работах – более низкой.

Испарение влаги с поверхности тела человека может происходить, если окружающий его воздух при данной температуре имеет дефицит влаги. Если путем конвекции, излучения и испарения организм человека все же не может отдать избытки тепла в окружающую воздушную неподвижную среду из-за чрезмерно высокой ее температуры и влажности, то при создании искусственными методами движения воздуха его охлаждающее действие на организм может быть увеличено, так как в этом случае теплоотдача путем конвекции и испарения возрастает.

Эти три параметра воздушной среды – температура, влажность, скорость движения воздуха всегда рассматриваются вместе , поскольку совокупно действуют на человеческий организм.

Между человеческим организмом и окружающей средой должен существовать правильный тепло- и влагообмен. Пределы таких сочетаний определяются значениями температуры, которые в этом случае (т.е. с учетом совокупного действия влажности и скорости движения воздуха) называются эффективными или эквивалентно-эффективными температурами комфорта.

Работы, выполняемые людьми в промышленных зданиях, по степени тяжести подразделяют на три категории:

а) легкие, без систематического физического напряжения (основные процессы приборостроения, машиностроения и т.п., выполняемые сидя или стоя) – затрата энергии до 175 Вт (150 ккал/ч);

б) средней тяжести, связанные с ходьбой, переноской небольших тяжестей, и работы, выполняемые стоя (прядильно-ткацкое производство, механическая обработка древесины, сварочные, литейные и т.п.), – затрата энергии до 290 Вт (250 ккал/ч);

в) тяжелые, связанные с постоянным физическим напряжением (кузнечные с ручной ковкой, литейные с ручной набивкой и заливкой опок и т.п.), – затрата энергии более 290 Вт, т.е. более 250 ккал/ч (см. СН 245–71, с. 77).

Каждый вид работ определяет свою температуру комфорта. Температура воздушной среды зависит от количества тепла, поступающего в нее от разных источников (за счет тепловыделений организма человека, извне, за счет инсоляции, от системы отопления, от раскаленного металла в металлургических производствах, от электродвигателей, от светильников искусственного освещения и пр.).

Теплопоступления, оказывающие влияние на температуру воздуха в помещении, называют «явным теплом» в отличие от скрытого тепла, образующегося при фазовых превращениях вещества.

Избытками явного тепла называют его остаточные количества (за вычетом теплопотерь зданием), поступающие в помещение при расчетных параметрах наружного воздуха после осуществления всех мероприятий по их уменьшению, например теплоизоляции оборудования.

В зависимости от величины избытков явного тепла производственные помещения разделяют на две группы: к первой отнесены помещения с незначительными избытками явного тепла – до 24 Вт/м 3 (до 20 ккал/м 3), ко второй – со значительными – более 24 Вт/м 3 (более 20 ккал/м 3).

Цехи, подобные сталеплавильным, т. е. со значительными теплоизбытками называют «горячими цехами». Для горячих цехов характерны выделение больших количеств тепла излучением (от раскаленного металла, сильно нагретого оборудования и пр.) и наличие сильных конвективных токов воздуха, возникающих в местах, где расположены источники тепловыделений, например сталеплавильные печи.

В зависимости от характера технологического процесса источники избыточного тепловыделения могут действовать постоянно или периодически. Периодические воздействия («тепловые удары») значительно усложняют создание требуемых метеорологических условий в производственных помещениях.

Санитарными нормами проектирования промышленных предприятий (СН 245–71) установлены оптимальные и допустимые параметры воздушной среды в рабочей зоне (рис. 5.3). При этом также учитывают категорию работы (легкая, средней тяжести и тяжелая) и периоды года: холодный, переходный (температура наружного воздуха ниже 10 °С) и теплый (температура наружного воздуха выше 10°С).

Рис. 5.3. Оптимальные температурно-влажностиые условия на рабочих местах в производственных помещениях промышленных зданий: а – в помещениях с незначительными и значительными избытками явного тепла в холодный и переходный периоды года (t в меньше 10 °С); 6 – в помещениях с незначительными и значительными избытками явного тепла в теплый период года (t в больше 10 = С). Комфортные зоны при категориях работ: 1 – легкой; 2 – средней тяжести, 3 – тяжелой

При отклонении параметров воздушной среды от оптимальных значений сверх допустимых пределов условия труда существенно ухудшаются, падает производительность труда, повышается утомляемость людей, возрастает восприимчивость к различным заболеваниям.

Состав воздуха . Воздух производственных помещений всегда содержит различные примеси, которые могут оказывать вредное воздействие на организм человека, конструкции здания и на технологический процесс или технологическое оборудование. К ним относятся:

а) влага , выделяемая людьми (потоотделение ) и оборудованием в процессе производства;

б) инертные и вредные газы , образующиеся в результате разложения органической пыли, выделяемые в источниках открытого огня и т.п.;

в) механические примеси органического и неорганического происхождения в виде аэрозолей или дисперсных систем, выделяемые в результате технологического процесса или деятельности человека.

Следует отметить, что на состав воздуха производственных помещений оказывает непосредственное влияние и наружная воздушная среда, содержащая такие же примеси. Перечисленные выше примеси в известных концентрациях делают состав воздуха вредным и даже опасным для человека, губительно действующим на строительные конструкции здания.

Мерилом непригодности воздуха может быть каждый из перечисленных выше видов примесей или их совокупность, что зависит от характера технологического процесса, протекающего в помещении. Например, в гаражах мерилом непригодности воздуха служит наличие в нем максимально допустимого количества окиси углерода, выделяемого при работе двигателей внутреннего сгорания. В производственных помещениях, связанных с выделением пыли, мерилом загрязненности воздуха служит содержание в нем пыли в количествах, превышающих безвредные для человека нормы.

Воздействие влаги в ее чистом виде на конструкции, например при конденсации влаги на внутренних поверхностях ограждающих конструкций (поверхностная конденсация) или внутри (внутренняя конденсация), может вызвать их переувлажнение (отсыревание), ухудшение физико-технических показателей и в конечном итоге преждевременный износ. Об этом подробно было изложено ранее .

Вредное воздействие влаги в производственных помещениях, технологические процессы в которых связаны, например, с выделением сернистых или других газов, гложет резко усилиться в результате взаимодействия этих газов с влагой и образования слабых растворов кислот, разрушающе действующих на строительные конструкции (сталь, бетон и др.).

Следует также иметь в виду, что присутствие в воздухе или на поверхности конструкции гигроскопических солей (как результат выделений технологического процесса) повышает температуру точки росы.

При перемещении по толще ограждающей конструкции к ее наружной поверхности влаги, сконденсировавшейся на внутренней поверхности и содержащей растворенные химические примеси, в холодных слоях конструкции может возникнуть кристаллизация этих примесей, сопровождающаяся расширением вещества и вызывающая серьезные нарушения структуры материала конструкции. Такое явление наблюдается, например, в наружных ограждающих конструкциях (стенах, покрытиях) красильных цехов текстильных предприятий, если они не имели надежной гидроизоляции, препятствующей проникновению влаги (в жидкой фазе) в толщу ограждения.

Столь же неприятные последствия могут давать результаты взаимодействия влаги и некоторых видов механических примесей, содержащихся в воздухе (аэрозолей), например, в виде нерастворимых пленок на ограждающих конструкциях или оборудовании.

Следовательно, влага в чистом виде как составная часть воздушной среды производственного помещения оказывает активное влияние на влажностное состояние ограждающих и других конструкций здания и в избыточных количествах способствует развитию процессов коррозии, снижению морозостойкости и пр., а в сочетании с химическими и другими примесями, содержащимися в воздухе, может стать решающим фактором, определяющим долговечность конструкций.

Поэтому при проектировании здания следует особенно" тщательно проанализировать ожидаемый влажностный режим воздушной среды и предусмотреть все необходимые меры для предупреждения его неблагоприятных воздействий как на человеческий организм, так и на конструкции.

Во многих промышленных зданиях воздушная среда может содержать вредные для человека химические вещества.

Вредные вещества по степени воздействия на организм человека подразделяются на четыре класса: I – чрезвычайно опасные, II – высокоопасные, III – умеренно опасные, IV – мало опасные. Их агрегатное состояние может быть в виде паров или газов, аэрозолей или смеси паров и аэрозолей. Некоторые из них опасны при поступлении в организм человека через дыхательные пути или через кожный покров.

Некоторые аэрозоли обладают фиброгенным действием, т.е. вызывают поражение дыхательных путей человека в результате патологического роста тканей.

Воздействие перечисленных веществ зависит от их концентрации. Поэтому установлены предельно допустимые концентрации вредных веществ 1 в воздушной среде рабочей зоны производственных помещений («Санитарные нормы проектирования промышленных предприятий» СН 245– 71).

В тех случаях, когда в воздухе рабочей зоны содержится несколько вредных веществ однонаправленного действия (т.е. близких по химическому строению и характеру биологического воздействия на организм человека), допустимыми считаются концентрации, которые удовлетворяют следующему соотношению:

где С 1 , С 2 , …, С n – фактические концентрации вредных веществ;

ПДК 1 , ПДК 2 , ..., ПДК n – предельно допустимые концентрации, установленные для их изолированного присутствия.

Следует иметь в виду, что степень агрессивного воздействия газов определяется не только их видом и концентрацией, но температурой и влажностью воздуха. Чем выше температура и влажность воздуха, тем активнее вредные вещества воздействуют на организм человека.

Степень агрессивного воздействия аэрозолей зависит от их вида, дисперсности, интенсивности обмена воздуха (для пыли и дыма), растворимости, гигроскопичности и, главное, от содержания влаги в воздухе.

По размерам частиц аэрозоли подразделяют на пыль (от 10 мкм и выше), туманы с жидкими частицами (0,1-10 мкм) и дым (0,001-0,1 мкм).

Агрессивное воздействие пыли (типа солей) зависит от гидрофильности, растворимости в воде, степени электролитической диссоциации и активности ионов и повышается в следующем порядке: силикаты, фториды, карбонаты, бикарбонаты, сульфиты, сульфаты и т.д. Наиболее опасна пыль свинца, фосфора и других подобных элементов, а также веществ, пылинки которых имеют острые края.

К производственным зданиям, технологические процессы в которых связаны с большим выделением пыли, относятся: трепальные отделения хлопчатобумажных фабрик, цехи стекольных заводов, фосфоритовые мельницы и крупозаводы, сырьевые отделения цементных заводов при сухом способе производства цемента и др.

На многих промышленных предприятиях производится переработка пыли. Например, на свинцово-цинковых заводах, в отделениях шахтных печей, конвертеров и агломерационных машин очень вредная свинцовая пыль улавливается и из нее извлекают ряд ценных элементов.

Для защиты помещения от пыли и загазованности воздушной среды наружный воздух, забираемый системой искусственной вентиляции, очищается в специальных фильтрах.

Особым, очень важным аспектом состояния воздушной среды производственного помещения является возможность возникновения в нем взрывоопасных смесей . Такие смеси образуются в помещениях, где в процессе производства в воздух выделяются пары газа или пыли, способные в смеси с ним (в определенных соотношениях) взрываться. Наибольшее число таких взрывов приходится на химические производства, связанные с водородом, ацетиленом и метаном.

Достаточно взрывоопасны производства с применением горючих жидкостей, а также производства с выделениями органической пыли. К ним относятся, например, производства, связанные с приготовлением и транспортированием угольной пыли, древесной муки, мукомольные производства, производства с выделением сахарной пыли и др.

Причинами образования взрывоопасных смесей, как правило, являются нарушения технологического процесса, неисправность аппаратуры, нарушение контроля за ней, аварийные ситуации, неисправность или недостаточная эффективность систем вентиляции и т.п.

При проектировании промышленных зданий на обеспечение оптимальных параметров воздушной среды должно обращаться большое внимание. Они достигаются при помощи систем отопления, естественной вентиляции (аэрации), искусственной вентиляции и систем кондиционирования воздуха, надлежащим образом отрегулированных и управляемых, а также путем правильного подбора физико-технических параметров ограждающих конструкций здания.

Наряду с этим важнейшим фактором в борьбе за обеспечение комфортных условий труда остается совершенствование технологических процессов и оборудования с целью снижения их влияния на состояние воздушной среды производственного помещения. В частности, защиту работающих от лучистого тепла осуществляют не только мерами строительного характера, но и мерами, непосредственно связанными с технологическим процессом и оборудованием, например, экранированием, охлаждением сильно нагретых поверхностей оборудования, созданием изолированных от внешней среды рабочих мест, применением водовоздушного душирования.

Целесообразно также здесь рассмотреть еще одну характеристику среды, которая имеет косвенное отношение к рассмотренным ранее вопросам. Имеется в виду накопление на теле работающих в помещении статического электричества . Этот фактор стал заметно проявляться при выполнении строительных конструкций из синтетических материалов.

При соприкосновении человека с заземленными металлическими деталями происходит электрический разряд, который отрицательно действует на организм человека и может в отдельных случаях привести к производственной травме, а во взрывоопасных помещениях – к взрыву или загоранию. На организм человека физиологическое воздействие зарядов статического электричества оценивается величиной потенциала в кВ. На теле человека при потенциале 3 кВ разряд не ощутим, при 4-5 кВ – ощутим, при 6-12 кВ человек ощущает легкие, сильные и острые как бы уколы. При потенциалах более 12 кВ возникают судороги.

Наиболее активные в электростатическом отношении – полы, выполненные из линолеума, ворсовых ковров, пластиков и т.п. Допустимая величина остаточного потенциала зарядов в синтетических покрытиях полов до 200 В.