Ликвидация бизнеса. Приказы. Оборудование для бизнеса. Бухгалтерия и кадры
Поиск по сайту

Глобальные проблемы и прогнозы на будущее. Глобальные прогнозы. Глобальные прогнозы, гипотезы и проекты — Гипермаркет знаний

Привет, Хабр!


Как говорится, по традиции раз в год мы в Яндекс.Погоде выкатываем что-нибудь новенькое. Сначала это был Метеум – традиционный прогноз погоды с помощью машинного обучения, затем наукастинг – краткосрочный прогноз осадков на основе метеорологических радаров и нейронных сетей. В этом посте я расскажу вам о том, как мы сделали глобальный прогноз погоды и построили на его основе красивые погодные карты.



Сперва пару слов про продукт. Погодные карты - способ узнавать погоду, очень популярный на западе и пока что не очень популярный в России. Причиной тому является, собственно, сама погода. Из-за особенностей климата наиболее населенные регионы нашей страны не подвержены внезапным погодным катаклизмам (и это хорошо). Поэтому интерес к погоде у жителей этих регионов скорее бытовой. Так, людям в центральной России важно знать, например, какая погода будет в Москве в выходные или что в четверг в Питере будет дождь. Такую информацию проще всего узнать из таблицы, в которой будет дата, время и набор погодных параметров.


С другой стороны, жителям Восточного Побережья США важнее знать траекторию очередного урагана с красивым женским именем, а фермерам из Дакоты - следить за распространением града по полям, на которых растет кукуруза. Такую информацию гораздо проще узнавать из карты, чем из множества таблиц. Так и получилось, что погодные сервисы в России - это скорее таблицы, а на Западе - скорее карты. Однако, и в России существуют паттерны потребления погоды, когда пользователю нужно знать где именно будет погода, которая ему нужна: это люди, выбирающие место для пикника в выходные, спортсмены, особенно с приставкой "винд" и "кайт" и, наконец, дачники. Именно для этих категорий пользователей мы и сделали свой продукт. А теперь я расскажу о том, что у него под капотом.

Расчет прогноза: персональный и глобальный

Мы сразу решили, что для построения карт наш прогноз должен стать глобальным. Ну хотя бы потому, что карты, покрывающие не весь земной шар, отдают средневековьем. Таким образом, нам нужно было расширить Метеум до глобального покрытия. Однако, предыдущая архитектура системы плохо поддавалась горизонтальному масштабированию.


Краткое содержание предыдущих серий. Как помнит внимательный читатель, в первой реализации Метеума мы рассчитывали прогноз погоды по мере необходимости. Как только пользователь попадал к нам на сайт, мы собирали для его координат список факторов и передавали в обученную модель Матрикснета. За сбор факторов отвечал микросервис, который мы называли vector-api. Микросервис был хорош всем, кроме одного: при добавлении новых факторов и/или при расширении географии покрытия, мы приближались к лимиту памяти физических машин, на которых микросервис работал. Кроме того, само по себе формирование ответа итогового погодного API содержало дорогую по времени и по нагрузке на процессор операцию с применением модели Матрикснета. Оба фактора сильно препятствовали построению глобального прогноза. Плюс к тому, в нашем бэклоге образовалась целая очередь из факторов, которые увеличивали точность прогноза в экспериментах, но не могли поехать в продакшен в связи с ограничениями, описанными выше.


Также мы столкнулись с недостатками выбранной архитектуры для карты осадков, горячо полюбившейся многим пользователям. Для хранения и обработки данных, необходимых для построения информации об осадках, использовалась СУБД PostgreSQL с расширением PostGIS. Во время летних гроз количество запросов в тяжелые ручки в секунду молниеносно превращалось из сотен в десятки тысяч, что влекло за собой высокое потребление процессоров и сетевых каналов серверов баз данных. Эти обстоятельства послужили дополнительным стимулом задуматься о будущем сервиса и применить иной подход в обработке и хранении погодных данных.


Альтернативой расчету погоды в рантайме был предварительный расчет прогнозов для большого набора координат по мере обновления факторов. Мы остановились на глобальной сетке, покрывающей сушу с разрешением 2x2 км, а воду – с разрешением 10x10 км. Сетка разбита на квадратики 3 на 3 градуса – эти квадратики позволяют нам параллельно готовить факторы для модели и обрабатывать результаты. Вот как это выглядит на карте.



Разбиение областей глобальной регулярной сетки


Процесс подготовки погодных факторов начинается с кластера Meteo. В соответствии с названием, на этом кластере происходит «классическая метеорология». Здесь мы скачиваем данные наблюдений и прогнозы моделей GFS (США), ECMWF (Англия), JMA (Япония), CMC (Канада), EUMETSAT (Франция), Earth Networks (США) и многих других поставщиков. Здесь же происходит расчет погодной модели WRF для наиболее интересных для нас регионов. Метеорологические данные, полученные от партнеров или в результате расчетов, обычно запакованы в форматы GRIB или NetCDF с разными уровнями сжатия. В зависимости от поставщика или способа расчета, эти данные могут покрывать Московскую область или весь мир и весить от 200Мб до 7Гб.


Из метеокластера файлы с прогнозами погоды попадают сначала в MDS (Media Storage, хранилище для больших кусков бинарной информации), а потом в - нашу Яндексовую Map-Reduce систему. Работа в YT делится на два этапа, условно названные "подвоз" и "применение". Подвоз - это подготовка факторов для последующего применения обученной модели. Факторы надо корректно переинтерполировать на итоговую сетку, привести к единым единицам измерения и разрезать на квадратики 3 на 3 градуса для параллельной обработки и применения. Сложность процедуры здесь состоит в больших объемах данных и в необходимости проделывать упражнение каждый раз, когда пришли новые данные о прогнозе для какой-либо области.


После того как первая ступень отработала, начинается применение заранее обученных моделей машинного обучения. В первой реализации Метеума мы могли прогнозировать только два основных погодных параметра с помощью машинного обучения: это температура и наличие осадков. Теперь, когда мы перешли на новую схему расчетов, мы можем использовать тот же подход для вычисления остальных параметров погоды. Применение машинного обучения дает ощутимый прирост в точности для новых параметров: давления, скорости ветра и влажности. Ошибка прогнозирования этих параметров на 24 часа вперед падает на величину до 40%. Помимо того, что для многих пользователей важны максимально точные показатели ветра и давления, это улушение позволяет нам более точно рассчитывать еще один популярный параметр - температуру по ощущениям. Он складывается из обычной температуры, скорости ветра и влажности. Еще одним заметным новшеством стал новый способ расчета погодных явлений. Теперь в его основе лежит мультиклассификационная формула - она определяет не только наличие или отсутствие осадков, но также их тип (дождь, снег, град), а еще наличие и балльность облачности.


Все эти модели нужно применить за ограниченное время для каждой точки регулярной сетки. После того, как модели применились, есть еще один слой обработки данных - бизнес-логика. В этом разделе мы приводим переменные, спрогнозированные с помощью машинного обучения, к нужным нам единицам, а также делаем прогноз консистентным. Поскольку прямо сейчас модели ML достаточно мало знают о физике процессов, в основном опираясь на факторы, полученные из метеомоделей, мы можем получить неконсистентное состояние погоды, например "дождь при температуре -10". У нас есть идеи как делать более правильно в этом месте, однако прямо сейчас это решается формальными ограничениями.


Сложность при применении обученных моделей состоит в том, что для каждого прогноза надо выполнить порядка 14 миллиардов операций. Факторов, необходимых для каждого расчёта - сотни, и список этих факторов весьма подвижен: мы постоянно с ними экспериментируем, пробуем новые, добавляем целые группы, выкидываем слабые. Далеко не все факторы берутся напрямую от поставщиков. Мы экспериментируем с факторами-функциями нескольких параметров. Правила формирования такого количества фичей очень сложно поддерживать в виде кода на Python: громоздко, трудно делать ленивые вычисления, трудно анализировать и диагностировать, какие фичи (или исходные данные для фичей) уже не нужны. Поэтому мы изобрели свой аналог LISP. Строго говоря, это не LISP, а уже готовое AST, которое очень похоже на диалект LISP, в котором учтена специфика наших данных. Процессор этого LISP-а мы сделали таким, как нам надо: ленивым и кэширующим. Поэтому мы, во-первых, не вычисляем факторы, которые стали уже не нужны, во-вторых, не вычисляем дважды, то, что нужно дважды. Эти механизмы автоматически распространяются на все расчёты. А благодаря тому, что это формальное AST мы можем: легко анализировать что нужно, а что не нужно; сериализовать и хранить отдельно части логики, писать бизнес-части в логи, формировать большие части логики автоматически (минуя представление в виде кода), версионировать их для проведения экспериментов и так далее. Оверхед же получился совершенно незначительный, так как все операции выполняются сразу над матрицами.



Общая схема поставки данных в API


После расчета прогнозов мы записываем их в специальный формат – ForecastContainer и загружаем эти контейнеры в микросервис отдачи данных из памяти. Дело в том, что на весь мир с нашей сеткой в 0.02 градуса получается около 1 166 400 000 значений с плавающей точкой, а это 34Гб данных только на один параметр. Таких параметров у нас больше 50 – поэтому держать эти данные полностью в памяти одной физической машины не представлялось возможным. Мы начали искать формат, поддерживающий быстрое чтение сжатых данных. Первым кандидатом стал HDF5 – у которого есть функциональность чанкования данных и поддержки буфера распакованных чанков. Вторым кандидатом стал наш --самописный-- проприетарный формат – матрицы float"ов сжатые LZ4 и записанные в Flatbuffer. Результаты тестов показали, что открытие файла с данными для работы занимает в два раза меньше времении у Flatbuffers, чем у HDF5, как и чтение произвольной точки из кеша. В итоге сейчас данные для 50 переменных занимают 52.1Гб.


Так как требования к потреблению памяти и времени ответа были очень высоки еще с постановки задачи, старый микросервис написанный на Python мы решили переписать на C++. И это дало свои результаты: Время ответа сервиса в 99 квантиле упало со 100мс до 10мс.


Перевод сервиса на новую архитектуру бэкендов позволил нам отдавать прогнозы погоды нашим внутренним и внешним партнерам напрямую, минуя кэши и расчеты моделей в рантайме, дал возможность при срочной необходимости с легкостью масштабировать нагрузки с использованием облачных технологий Яндекса.


Итого, новая архитектура позволила нам уменьшить тайминги ответов, держать бОльшие нагрузки и избавиться от рассинхрона данных, отдаваемых разным партнерам. Данные Яндекс.Погоды представлены в большом количестве сервисов Яндекса и не только: главная страница Яндекса, плагин погоды в Яндекс.Браузере, погода на Рамблере и так далее. В результате все они получили возможность отдавать именно те значения, которые в этот момент видят пользователи основной страницы Яндекс.Погоды .

Ближе к людям: тайл-сервер и фронт

Для того, чтобы отрисовать прогнозы на наших новых картах, необходимо достаточно много дополнительной обработки. Сначала мы запускаем MapReduce операции на тех же данных, что отдаются микросервисом и API для формирования данных на весь мир на регулярной широтно-долготной сетке с разрешением в 0.02 градуса. На выходе для каждого параметра: температуры, давления, скорости и направления ветра, а также для каждого горизонта: времени прогноза в будущее или времени факта в прошлое мы получаем матрицы размером 9001*18000.


После этого мы строим проекцию Меркатора по этим данным и нарезаем их на тайлы в соответствии с требованиями API Яндекс.Карт. Здесь мы встречаемся с одной из самых больших сложностей в цепочке подготовки погодных карт: количеством тайлов, которые нужно оперативно обновлять при генерации каждого нового прогноза. Так каждый следующий уровень приближения карты (zoom) требует в 4 раза большего количества тайлов чем предыдущий. Несложно прикинуть, что для всех уровней приближения от 0 вплоть до 8 нужно подготовить


картинок. Всего для каждого из четырёх параметров мы показываем 25 горизонтов, из них прогнозов в будущее 12. Поэтому каждый час требуется обновить 1048560 картинок.

По мере готовности картинок мы загружаем их во внутреннее хранилище файлов Яндекса с высокой параллельностью. Как только весь слой карты для всех зумов загрузился, мы подменяем значение индекса, по которому фронт понимает, куда идти за новыми тайлами. Таким образом достигается достаточно высокая скорость появления новых прогнозов на карте и консистентность данных в пределах времени прогноза.


Даже несмотря на серьезную подготовку на бэкенде, отрисовка и анимация погодных карт тоже представляет собой сложную задачу. Рассказать все в одной статье не получится, поэтому здесь мы сделали акцент на самой заметной фиче - отрисовке анимированных частиц, показывающих направление втера.



Так выглядят частицы анимации ветра на картах погоды


Для оптимизации потребления ресурсов клиентского устройства, анимация ветра выполнена с использованием WebGL. WebGL позволяет задействовать значительные ресурсы графического адаптера, разгружая процессорный поток выполнения кода, а также оптимизируя расход аккумулятора. Задачей процессора в этом случае становится установка аргументов выполнения шейдерных программ. Для перемещения частиц используется подход хранения положения частицы в 2х цветовых каналах текстуры для каждой оси (x/y). Таких текстур положения две: одна хранит текущее положение частиц, вторая предназначена для сохранения нового состояния.


Процесс отрисовки частиц описан несколькими WebGL программами. Для большей совместимости использована первая версия этого стандарта. В браузере использование WebGL выполняется через соответствующий контекст элемента canvas. Так как графический ускоритель способен выполнять в несколько раз больше параллельных операций через процессор, то перемещение частиц следует выполнять через программу WebGL. Выходной результат выполнения такой программы представляет набор точек в заданном пространстве. Это пространство по умолчанию является видимой областью своего canvas, то есть, экраном пользователя. Однако есть возможность указать целью отрисовки текстуру, используя фреймбуферы.


При старте слоя ветра процессор генерирует начальное положение частиц, создавая типизированный массив элементов в диапазоне 0...255, в количестве (частицы * компоненты) (RGBA). Из этого массива создаются две WebGL текстуры положения. Данные по скорости ветра также записываются в текстуру, чтобы видеокарта имела к ним доступ. Красный и зеленый канал этой текстуры содержат значение параллельной и меридиональной скоростей соответственно, причем значение 127 соответствует отсутствию ветра, значения меньше 127 задают скорость ветра в отрицательном направлении по оси, значения больше - в положительном. С помощью подготовленных текстур происходит отрисовка текущего положения частиц. После отрисовки, одна из текстур положения обновляется, используя вторую текстуру как источник данных по текущему состоянию. Следующие видимые кадры будут сформированы при помощи отрисовки предыдущего снимка положения частиц с увеличенной прозрачностью, поверх которого будет нанесено текущее положение частиц. Таким образом получаются частицы с затухающими хвостами.



Так выглядят частицы анимации ветра в процессе их создания


Как оказалось, текущий алгоритм кодирования положения частиц в пикселях текстуры для качественной визуализации требует поддержки на аппаратном уровне высокой точности вычислений и float-значений в самих текстурах, чего зачастую нет на мобильных устройствах, поэтому алгоритм будет переработан и улучшен.

Заключение и планы

Вот примерно все, что я хотел рассказать вам об архитектуре Яндекс.Погоды. За этот год мы полностью переделали сервис изнутри (об этом рассказано выше) и снаружи (практически все платформы, на которых присутствует Я.Погода были существенно перерисованы). Финалом этих изменений стали интерактивные погодные карты, которые вы можете попробовать на нашем сервисе .


Однако, мы никогда не останавливаемся на достигнутом. В следующем году вас ждет много интересных продуктовых и технологических апдейтов: от сервиса, позволяющего исследовать климат в разных уголках Земли до ответа на вопрос "чем дышит человек". И это, разумеется, далеко не все. Оставайтесь с нами.

Добавить метки

С появлением глобальных проблем в большинстве наук наметился повышенный интерес к будущему, к перспективам развития. Это будущее исследуется на всех уровнях – локальном, страновом, субрегиональном, региональном и глобальном, причем, вполне естественно, наибольший интерес вызывают глобальные прогнозы. Так возникло новое междисциплинарное направление – глобальное прогнозирование, занимающееся анализом современных и в особенности будущих тенденций развития человечества. С самого начала оно приняло форму глобального моделирования и нашло выражение в построении математических моделей сложных многофакторных процессов мирового развития. Со временем они подверглись определенной структуризации, и в результате стали выделять модели социально-экономического, демографического, экологического развития. Но для наиболее важных из них всегда был и остается характерным комплексный подход.
Российские и зарубежные авторы, рассматривающие проблемы глобального прогнозирования и моделирования, обычно выделяют в этом процессе модели первого, второго и третьего поколений. Они отличаются друг от друга не столько методикой расчетов (хотя и она постоянно совершенствуется), сколько общей направленностью и общим характером оценок и прогнозов, имея в виду степень их оптимизма или пессимизма.
Первые научные организации для прогнозирования будущего человечества были созданы в США еще в 40-х гг. XX в. В 1946 г. группа видных предпринимателей в сотрудничестве с учеными Стэнфордского университета (Калифорния) основала Стэнфордский исследовательский институт. Через два года возник еще один «мозговой трест» – «РЭНД корпорейшн» в Санта-Монике (Калифорния). В 1956 г. была создана «Систем девелопмент корпорейшн». В 1966 г. в Вашингтоне было основано «Общество по изучению будущего мира». В результате в 60-х гг. XX в. только в США насчитывалось 15 крупных институтов и организаций такого рода, в которых тысячи ученых занимались исследованием современного и прогнозированием будущего развития. Аналогичные учреждения возникли и в Европе: «Институт проблем будущего» в Вене, международный фонд «Человечество в 2000 году» в Нидерландах.
С позиций оценки глобальных прогнозов того времени немалый интерес и в наши дни может представлять научно-популярная книга двух немецких авторов под названием «Мир в 2000 году», переведенная на русский язык. Уже сам ее подзаголовок свидетельствует о том, что данная работа не представляет собой самостоятельного и оригинального исследования тенденций развития мировой экономики. В основу книги были положены разнообразные прогнозы, относящиеся к развитию отдельных отраслей хозяйства (черная металлургия, химия, транспорт, информационная техника), к окружающей среде (окружающая среда, ресурсы Мирового океана), а также к трудовым ресурсам, медицине, будущему городов. Характерно, что конечной датой рассматривавшихся Ш. Байнхауэром и Э. Шмакке прогнозов был 2000 год, что для того времени являлось довольно отдаленной перспективой. Книга двух авторов была выдержана не просто в оптимистических, но прямо-таки в восторженных тонах, что вообще было свойственно западной футурологии того периода.
Но затем, на рубеже 60-х и 70-х гг. XX в., появляются прогностические исследования совсем другого, гораздо более пессимистического плана. Об этом свидетельствуют и их названия: «Впереди бездна» (А. Печчеи), «Футурошок» (А. Тоффлер), «Планета под угрозой» (Р. Фолк) и др. Книга известного американского ученого А. Тоффлера, изданная в 1970 г., стала настоящим бестселлером, а сам термин «футурошок», т. е. шок от встречи человека с будущим, стал нарицательным. К этому перечню вызвавших большой резонанс работ прогностического характера следует добавить и книгу Г. Кана и Э. Винера «Год 2000». За основу своих расчетов они взяли показатель душевого ВВП (на уровне 1965 г.). Вывод их заключался в том, что для достижения тогдашнего уровня США странам Западной Европы потребовалось бы 10–20 лет, СССР – почти 30, Китаю – больше 100, Индии – почти 120, а Индонезии – почти 600 лет.
Но переломным моментом в глобальном моделировании оказалось начало 1970-х гг., когда стали появляться работы Римского клуба – международной организации по прогнозированию и моделированию развития всемирной системы. Римский клуб был основан в 1968 г. представителями десяти стран, собравшимися в Риме по инициативе видного общественного деятеля, управляющего концерном ФИАТ и впоследствии президента этого клуба Аурелио Печчеи. Именно с Римским клубом в первую очередь и связано зарождение и развитие такого нового направления исследований, как глобалистика, которое занимается изучением глобального мира и его проблем. Основной целью своей деятельности эта организация поставила привлечение внимания мировой общественности к глобальным проблемам человечества и к поискам путей их решения. Уже в начале 1970-х гг. Римский клуб объединял до ста известных ученых, общественных деятелей и представителей деловых кругов стран Запада, которые участвовали в его работе в качестве частных лиц, а свои исследования стали публиковать в виде докладов этому клубу. Пожалуй, наибольшую известность приобрели первые из этих докладов, тесно связанные с глобальными проблемами человечества. Кстати, и сам этот термин был введен в научный оборот именно в работах авторов Римского клуба.
Основополагающей работой, выдержанной в духе не просто футурологии как таковой, а именно глобального моделирования, следует считать книгу профессора Массачусетского технологического института в Бостоне Дж. Форрестера «Мировая динамика» (1971). В своей книге Дж. Форрестер при помощи математических моделей и компьютерной техники попытался имитировать динамику мирового развития. При этом автор рассматривал мир как единое целое, как систему взаимодействующих процессов: демографических, промышленных, исчерпания природных ресурсов, загрязнения окружающей среды, производства продуктов питания. А его расчеты и модели приводили к выводу о неизбежности серьезного кризиса во взаимоотношениях человека с окружающей средой, который можно было ожидать уже в начале XXI в. Книга Дж. Форрестера (она была переведена и на русский язык) послужила своего рода фундаментом для последующих докладов Римскому клубу.
Первый из докладов был подготовлен в 1972 г. в США многонациональной группой ученых под руководством ученика Дж. Форрестера Д. Медоуза. Он назывался «Пределы роста» (The Limits of growth). Основное его содержание составляла кибернетическая модель развития человечества на ближайшие 130 лет, при разработке которой авторы исходили из анализа пяти главных тенденций глобального масштаба: ускоренной индустриализации, быстрого роста населения, широкого распространения голода и недоедания, исчерпания невозобновимых природных ресурсов и ухудшения среды обитания. Все они были «проиграны» с помощью ЭВМ в разных вариантах. При этом в качестве своеобразного эталона Д. Медоуз и его сотрудники исходили из следующих «контрольных цифр»: 1) общая потенциальная площадь пахотных земель на планете составляет 3,2 млрд га; 2) максимальная урожайность может быть в три раза выше уровня 1970 г.; 3) общие доступные запасы невозобновимых природных ресурсов в 200 раз больше уровня потребления 1970 г.; 4) уровень поглощения загрязнителей биосферой и основными ее подсистемами может быть в 25 раз выше, чем в природных экосистемах на уровне 1970 г.


Содержание доклада Д. Медоуза носило ярко выраженный алармистский характер. В нем утверждалось, что при существующих на рубеже 60-х и 70-х гг. XX в. темпах прироста населения (удвоение за 33 года), роста промышленного производства (удвоение за 10–15 лет), тенденциях загрязнения окружающей среды, производства продовольствия, изъятия природных ресурсов «предел роста на этой планете будет достигнут в течение ближайших ста лет» (рис. 163). При этом уже в начале третьего тысячелетия человечество может в значительной степени утратить контроль над мировым развитием. Чтобы избежать грозящей глобальной катастрофы, авторы предложили «затормозить» и демографическое, и экономическое развитие мира, перейдя к «нулевому росту? и населения, и производства. По их расчетам, разрушение мировой системы еще можно было бы предотвратить, если бы удалось остановить рост населения в 1975 г., а промышленный рост – в 1985 г. «Пределы роста» получили огромный резонанс во всем мире. Одновременно общество раскололось на сторонников и противников «нулевого роста». И хотя противников его было больше, главная цель доклада, несомненно, была достигнута: после него к проблемам будущего человечества было привлечено всеобщее внимание.
В целом же «Пределы роста» произвели на мировое общественное мнение такое впечатление, что Римский клуб решил провести повторное исследование тех же проблем. В результате появился второй доклад Римскому клубу, подготовленный в 1974 г. профессором прикладной математики Кливлендского университета (США) М. Месаровичем и директором института механики в Ганновере (ФРГ) Э. Пестелем. Он назывался «Человечество на поворотном пункте» (Mankind at the Turning Point). Модель всемирной системы этих двух авторов делилась на «страты», или различные уровни и сферы иерархической системы. При этом рассматривались: «страта» среды обитания человека (климатические условия, вода, земля, экологические процессы); технологическая «страта» (биологические, химические, физические условия); демографическая и экономическая «страты»; групповые «страты», которые включали общественные условия; наконец, индивидуальная «страта», под которой подразумевался психический и биологический мир человека. В отличие от первой модели прогноз рассматривался только на 50 лет (1975–2025 гг.).
У модели М. Месаровича и Э. Пестеля было еще одно важное отличие от моделей Дж. Форрестера и Д. Медоуза, особенно важное для географов. Дело в том, что в двух первых моделях мир рассматривался как единое целое, без всякой внутренней регионализации. В работе же «Человечество на поворотном пункте» были впервые представлены региональные модели, причем в трех вариантах.
Чувствуя непопулярность, да и практическую невозможность осуществления идеи «нулевого роста», М. Месарович и Э. Пестель, наряду с ней, выдвинули концепцию сбалансированного («органического?) роста населения и экономики. Они также подчеркивали, что катастрофа грозит прежде всего развивающимся странам, где экономика, особенно с учетом демографического взрыва, не может исходить из «нулевого роста». Но этот рост необходимо как бы компенсировать более медленным экономическим развитием стран Севера.
Третий доклад Римскому клубу был подготовлен в 1976 г. группой ученых под руководством известного голландского математика и экономиста, лауреата Нобелевской премии по экономике Яна Тинбергена. Он назывался «Пересмотр международного порядка». Как показывает само это название, в докладе Я. Тинбергена – в соответствии с принятой Генеральной Ассамблеей ООН в 1974 г. развернутой программой установления такого порядка – анализировались перемены в международных экономических отношениях и перспективы их прогрессивного развития. Иными словами, речь шла о «наведении порядка» в мировой капиталистической системе торговли, кредитно-финансовых отношений, распределении продовольствия, сотрудничества в сфере наукии техники и т. д. А практические рекомендации доклада сводились в основном к постепенному «подтягиванию» развивающихся стран Азии, Африки и Латинской Америки к уровню более передовых стран. Я. Тинберген также исходил из концепции «органического роста» для всего мира. Этот доклад (он переведен и на русский язык) подвергался критике. В частности, за то, что, разделив весь мир на «мир богатых» и «мир бедных» наций, авторы не учитывали того, что и сами нации неоднородны по своему социальному составу.
В принципе алармистский характер первых докладов Римскому клубу можно понять. Ведь первая половина 70-х гг. XX в. была временем энергетического и сырьевого кризисов, пика демографического взрыва, резкого обострения продовольственной и экологической проблем, кризиса городов, роста безработицы, преступности и других социальных бедствий. В то время и во многих других публикациях, а также в программах «зеленых» отрицалась необходимость развития атомной (да и обычной тепловой) энергетики, выдвигались требования полного запрета сведения лесов, прекращения химизации сельского хозяйства, замены автомобиля велосипедом и т. д.
Во второй половине 70-х гг. XX в. появилось еще несколько докладов Римскому клубу. Хотя такого большого резонанса, как первые три, они не вызвали, важно отметить, что в них заметно ослабли сверхтревожные алармистские тенденции и уже не встречалась прежняя негативная реакция на прогресс науки и техники.
Это относится и к другим футурологическим исследованиям, опубликованным во второй половине 1970-х гг. В качестве примеров такого рода можно назвать книгу основателя и директора Гудзоновского института в США Германа Кана «Следующие 200 лет» (1976) или доклад группы экспертов ООН, подготовленный под руководством известного американского экономиста, лауреата Нобелевской премии по экономике Василия Леонтьева под названием «Будущее мировой экономики» (1977). В модели В. Леонтьева учитывалось взаимодействие 25 отраслей в 15 регионах мира, а также 8 видов загрязнения окружающей среды и 5 видов очистной деятельности. Уровни развития отдельных стран эксперты определяли по размерам душевого ВВП. Эта книга также была переведена на русский язык. Относительной реалистичностью отличалась и книга английского экономиста Э. Шумахера «Малое – это прекрасно. Экономика ради людей».
В первой половине 1980-х гг. урожай на футурологической ниве был не меньшим. Вся тональность глобальных прогнозов в эти годы довольно сильно изменилась. Экологический шок отошел на второй план, тогда как на первом оказалась «новая технократическая волна», связанная с переходом экономики развитых стран Запада к постиндустриальному обществу. Например, Г. Фридрихс и А. Шафф в своем докладе исходили из того, что благодаря миниатюризации, автоматизации, компьютеризации и роботизации микроэлектроника может принципиально преобразовать наш мир и позволить решить, казалось бы, непреодолимые проблемы, в том числе и глобального характера. Сам по себе здоровый оптимизм большинства этих работ следует только приветствовать. Однако некоторые из них рисовали, пожалуй, уж слишком идиллическую картину будущего.
В качестве примера можно привести зарисовку города будущего из книги Дж. Мартина «Телематическое общество». Город будущего, по мнению автора, – это парки, озера, клумбы, кристально чистый воздух. Большинство машин находится на громадных стоянках за чертой города. Под улицами проведены кабельные сети, обеспечивающие все возможные виды коммуникаций. Нет необходимости в частых поездках по городу, как прежде. Банковские операции осуществляются прямо из дома, равно как и приобретение товаров. Всячески поощряется работа на дому, выполняемая при помощи терминалов и видеофонов, передающих изображения, документы и речь. Встречи и всякого рода рабочие конференции осуществляются по телекоммуникационным сетям, охватывая удаленных друг от друга участников. Преступность канула в прошлое, уличных ограблений не происходит, потому что люди носят при себе мало наличности, расплачиваясь при помощи банковских карточек, которые могут быть использованы только их владельцами. Жители города имеют специальные радиоустройства, при помощи которых автоматически вызывается полиция и «скорая помощь». Дома снабжены сигнальными системами на случай пожара. Подключив карманный компьютерный терминал в любом месте к сетям связи, можно за считанные минуты запросить сведения, скажем, о хорошем ресторане, расписании движения самолетов, театральных спектаклях, связаться с медицинскими учреждениями, компьютером на бирже, самому послать сообщение и даже затребовать из специального развлекательного банка данных остроту на нужную тему…
Однако во второй половине 80-х – первой половине 90-х гг. XX в. ситуация на «рынке» глобального моделирования снова несколько изменилась.
В прогнозах и моделях опять стал чувствоваться «футурошок». Об этом свидетельствуют материалы Международной комиссии по окружающей среде и развитию, созданной в 1983 г. по инициативе ООН, озаглавленные «Наше общее будущее», а также «Повестка дня на XXI век», принятая в 1992 г. на Конференции ООН по окружающей среде и развитию в Рио-де-Жанейро.
В этом смысле наибольший интерес представляет новая книга Д. Медоуза и его соавторов «За пределами роста» (1992), вышедшая через 20 лет после первой. Признавая, что за это время в мире произошли большие перемены, авторы в целом остаются на своих прежних позициях и подтверждают те главные выводы, к которым пришли еще в 1972 г. Во-первых, о том, что темпы использования человечеством многих важных видов ресурсов и темпы производства многих видов загрязнений уже превышают допустимые пределы и, следовательно, без существенного уменьшения потоков материальных и энергетических ресурсов в ближайшие десятилетия произойдет неконтролируемое сокращение душевых показателей производства продуктов питания, потребления энергии и промышленного производства. Во-вторых, о том, что это сокращение не является неизбежным, но, чтобы его предотвратить, необходим переход к такой политике и практике, которые способствовали бы уменьшению роста численности населения и уровня материального потребления и одновременно быстрому повышению эффективности использования материальных и энергетических ресурсов. В-третьих, о том, что технологически и экономически создание устойчивого общества пока еще возможно.
В 1990-х гг. значительно расширился и сам клуб глобальных «модельеров». Ныне составлением глобальных футурологических моделей занимаются Институт мировых ресурсов в Вашингтоне, Стокгольмский институт окружающей среды, Международный институт экологической технологии и управления, Мировой банк, Конференция ООН по торговле и развитию (ЮНКТАД) и многие другие организации. Но среди них особого внимания заслуживают два института. Это Институт Всемирного наблюдения («Уорлдуотч») в Вашингтоне, возглавляемый известным ученым Лестером Брауном и регулярно публикующий свои обзоры и прогнозы (три из них переведены на русский язык), а также Международный институт прикладного системного анализа (МИПСА) в Вене, который ведет разработки по трем главным направлениям: 1) изменение окружающей среды в глобальных масштабах; 2) глобальные экономические преобразования; 3) методологические основы анализа глобальных проблем. Наряду с этим он занимается и глобальными прогнозами в области народонаселения.
В дальнейшем появились также интересные прогнозы американских географов, например С. Коэна, касающиеся будущего политической карты мира. Согласно этим прогнозам, столь характерный для наших дней процесс распада государств будет продолжаться и впредь, в результате чего через 20–30 лет количество независимых стран может достигнуть примерно 300 (по сравнению с 57 в 1900 г., 71 в 1938 г., 92 в 1959 г. и 193 в 2000 г.). Например, С. Коэн считает, что в Европе независимыми государствами станут Фландрия, Валлония, Бретань, Уэльс, Шотландия, Каталония, Страна Басков, в Азии – о. Минданао, Пенджаб, Тибет, в Африке – Катанга, в Северной Америке – Французская Канада. Предсказывается возможный распад Австралии, Афганистана, ЮАР, Судана, Бразилии, Мексики, а также (хотя бы отчасти) России и Китая. В основе таких прогнозов лежит тенденция к политическому самоопределению, столь отчетливо проявляющаяся в наши дни.
Другой американский специалист, профессор Гарвардского университета P. Купер, опубликовал свой геополитический прогноз, согласно которому уже в первые десятилетия XXI в. в мире появятся как новые «Южные Кореи», быстро развивающиеся по демократическому пути, так и новые «Ираки», следующие курсом тоталитаризма. В американской же печати недавно появился прогноз, исходящий из того, что в случае сохранения нынешних сепаратистских тенденций к 2100 г. общее число стран мира может достигнуть 2000! Среди наиболее очевидных кандидатов названы Шотландия, Квебек, Палестина, Косово, Тибет, Кашмир, Курдистан, Чечня, Южная Осетия, Тимор, Биафра (Нигерия).
Говоря о глобальных геополитических прогнозах, можно отметить, что после окончания «холодной войны» и противоборства между социализмом и капитализмом в центре внимания оказались взаимоотношения между «богатым Севером» и «бедным Югом», который стал все активнее выступать против глобализации, происходящей под эгидой единственной мировой сверхдержавы – США. Отныне главное внимание футурологов начала привлекать проблема диалога цивилизаций и определения вероятности нарушения такого диалога и столкновения цивилизаций в более или менее отдаленном будущем. В первую очередь речь шла о постепенно обостряющихся отношениях между европейско-американской и исламской цивилизациями, взгляды которых на человеческие ценности и перспективы мирового развития оказались едва ли не противоположными. Что же касается событий осени 2001 г. (террористические акты исламистов в США и ответные удары по Афганистану), то многие аналитики рассматривают их как коренной сдвиг во всем современном мировом геополитическом порядке.

Выпущенный AVIXA в середине осени глобальный анализ тенденций в отрасли Industry Outlook and Trends Analysis (IOTA) вызвал немалый интерес в профессиональном сообществе. Чтобы еще больше подогреть ажиотаж, а заодно продемонстрировать результаты проделанной работы, ассоциация на днях организовала вебинар «Тренды AV-индустрии: 2018 и далее», с некоторыми выдержками из которого мы предлагаем ознакомиться.

Проведением анализа занималось одно из ведущих мировых консалтинговых агентств IHS Markit. Его услугами только в США пользуются 94 из 100 крупнейших компаний, общее же количество клиентов в 165 странах и вовсе превышает 50 000. IHS Markit занимается различными отраслями и сферами: от компонентов, технологий и готовых продуктов, до конечных рынков и потребителей, взаимодействия со СМИ и телекоммуникаций. Это позволяет ей иметь моментальный доступ к широкому спектру статистических данных, повышающих точность работы. Докладчиками на вебинаре выступали старший директор направления потребительской электроники в IHS Markit Том Моррод, старший директор Market Intelligence в AVIXA Шон Уорго, и старший менеджер по проведению вебинаров в IHS Markit Аллен Татара , выполнявший роль модератора.

Финансовые перспективы

Глобальный доход про-AV индустрии начиная с 2015 года показывает устойчивый рост. К концу текущего года его суммарный объем достигнет $185 млрд, а к 2020-му – превысит отметку в $220 млрд. Наилучшую динамику как за последние два года (10%), так и в следующие пять (20%) показывают энергосберегающие технологии (Environmental), худшую - проекторы, которые с 2014 по 2016 год потеряли 13% прибыли, и инфраструктура (стойки, панели, встраиваемые боксы и т.д.), потерявшая 2%. В пятилетнем прогнозе на 2014-2017 годы ситуация более оптимистична: инфраструктура растет на 4%, проекторы проседают на 10%. Правда, по заявлению AVIXA, опасности для отрасли это не несет – $10 млрд. потерь в период с 2014 по 2017 год и еще $10 млрд, которые будут потеряны в ближайшие пять лет, окупит $41 млрд. прибыли активно растущего направления дисплеев. Важно также отметить, что хотя крупные корпорации по-прежнему приносят львиную долю прибыли, самый быстрый рост наблюдается в отраслях, имеющих небольшую долю рынка.

Стабильный прирост происходит в таких сегментах как ПО (самостоятельные приложения для дизайна, контроля, совместной работы и Digital Signage), сервис (дизайн, интеграция, программирование, прокатный бизнес) и системы управления. Самые скромные темпы развития показывают аудио- и видеооборудование, а также направления «потоковое мультимедиа, хранение и передача данных» (Streaming Media, Storage and Distribution), охватывающего как собственные средства AV-систем, так и задействованные под эти нужды IT-ресурсы. В цифрах, демонстрирующих долю получаемой прибыли, картина несколько иная: больше всего отрасли приносит именно «потоковое мультимедиа, хранение и передача данных», после идут сервис и видеооборудование. Меньше всего - ПО, аудио, энергосберегающие технологии и системы управления.

Если говорить о региональных вкладах, то наибольший прирост отрасли (8%) обеспечивают ближневосточный и африканский регионы. У них сейчас все очень активно развивается, реализуется множество проектов с многомиллиардными бюджетами, особенно в Северной Африке и на Ближнем Востоке. Следующим по прибыли со своими 5% идет Азиатско-Тихоокеанский регион. Традиционно хорошо идут дела в Китае, дающем львиную долю прироста. Здесь развивают системы городской автоматизации, транспорт. Например, в ближайшие планы входит строительство в стране 3000 км железных дорог и 500 аэропортов, требующих соответствующей AV-инфраструктуры. Америка и Европа вместе приносят чуть менее 4%, причем свой весомый вклад дает и Россия. Страна готовится к предстоящему FIFA 2018, строится множество объектов инфраструктуры.


(Нажмите на фото для увеличения)

Тренды рынка

Обсуждая перспективы развития, нельзя не упомянуть и такую важную вещь, как основные направления, которые в ближайшем будущем будут двигать профессиональную AV-индустрию вперед. Здесь были выделены шесть пунктов, и на каждом стоит остановиться подробнее:

  • Передовые технологии создания дисплеев и Digital Signage;
  • Интерактивность, реализованная с применением виртуальной или дополненной реальности;
  • «Умные» акустические системы и голосовые помощники;
  • IOT в proAV: здания с полностью подготовленной AV-инфраструктурой и автоматизацией;
  • IOT в proAV: облачные технологии и интеграция с IT;
  • Новые возможности для вертикального рынка, открываемые технологиями.

Повсеместное распространение дисплеев с разрешением 4K, цены на которые постоянно снижаются, а объемы продаж растут, и появление более продвинутых технологий отображения на базе жидких кристаллов обеспечат направлению устойчивый рост.

Виртуальная реальность развивается впечатляющими темпами, поэтому ее применение в различных профессиональных областях лишь вопрос времени. К 2022 году AVIXA прогнозирует появление почти 20 000 VR-центров по всему миру и использование VR-технологий в работе, например, дизайне интерьера или демонстрации продуктов.

Важной тенденцией мобильного рынка стало использование голоса в качестве пользовательского интерфейса: в 2011 году существовал единственный голосовой помощник Siri, в 2015 их стало четыре, а в 2017 количество возросло до десяти. Начинавшись как мобильное приложение, ассистенты не так давно стали поставляться и в акустических системах, что в дальнейшем позволило интегрировать их в системы домашней автоматизации. Фаворит здесь пока единственный - Amazon Alexa. Помощник поддерживает до 20 000 различных действий, вроде отправки почты или поиска информации, и команд, отправляемых совместимым приложениям. При этом охват тематик у Alexa огромен. Google Asisstent поддерживает лишь 615 действий и приложений, а Samsung Bixby и вовсе 35.


(Нажмите на фото для увеличения)

Под «умными» зданиями понимаются такие объекты, в которых классические дискретные системы все больше и больше приобретают вид единой системы с унифицированными компонентами и централизованным управлением. Наметилась устойчивая тенденция интеграции proAV с системами управления и световым оборудованием, продажи которых в ближайшие годы также будут показывать хороший рост. Эта интеграция активно происходит во всех сферах. В идеальном варианте «умного» здания в единую систему должны быть объединены AV-инфраструктура, свет, а также системы безопасности, энергосбережения и контроля доступа.


(Нажмите на фото для увеличения)

Применение в сфере proAV proIT оборудования и облачных сервисов открывает перед интеграторами новые возможности масштабирования и использования различных IT-функций. Владельцы вычислительных мощностей стараются предложить своим клиентам программные и аппаратные средства для удаленного решения широкого спектра задач. Всевозможные бизнес-модели: PaaS (платформа как сервис), DBaaS (база данных как сервис) или SaaS (программное обеспечение как сервис) позволяют получить все необходимое для продуктивной работы за меньшие деньги, чем при приобретении собственного оборудования и найме штата персонала.

Потенциал, открываемый технологиями для вертикального рынка, зависит от специфики интересов компаний. AV-интеграторы, познакомившись с перспективными решениями индустрии, смогут увеличить свою долю на существующем рынке или найти новые. Для производителей это возможность найти профильные варианты использования, оценить набор функций и покупательскую способность в конкретном сегменте рынка. Дистрибьюторы могут определить релевантность своего портфеля, найти новые рынки и занять на них долю, а инвесторам это поможет проанализировать потенциал роста компаний, их базовую производительность и жизнеспособность.

Глобальные прогнозы

С появлением глобальных проблем в большинстве наук наметился повышенный интерес к будущему, к перспективам развития. Это будущее исследуется на всех уровнях – локальном, страновом, субрегиональном, региональном и глобальном, причем, вполне естественно, наибольший интерес вызывают глобальные прогнозы. Так возникло новое междисциплинарное направление – глобальное прогнозирование, занимающееся анализом современных и в особенности будущих тенденций развития человечества. С самого начала оно приняло форму глобального моделирования и нашло выражение в построении математических моделей сложных многофакторных процессов мирового развития. Со временем они подверглись определенной структуризации, и в результате стали выделять модели социально-экономического, демографического, экологического развития. Но для наиболее важных из них всегда был и остается характерным комплексный подход.

Российские и зарубежные авторы, рассматривающие проблемы глобального прогнозирования и моделирования, обычно выделяют в этом процессе модели первого, второго и третьего поколений. Они отличаются друг от друга не столько методикой расчетов (хотя и она постоянно совершенствуется), сколько общей направленностью и общим характером оценок и прогнозов, имея в виду степень их оптимизма или пессимизма.

Первые научные организации для прогнозирования будущего человечества были созданы в США еще в 40-х гг. XX в. В 1946 г. группа видных предпринимателей в сотрудничестве с учеными Стэнфордского университета (Калифорния) основала Стэнфордский исследовательский институт. Через два года возник еще один «мозговой трест» – «РЭНД корпорейшн» в Санта-Монике (Калифорния). В 1956 г. была создана «Систем девелопмент корпорейшн». В 1966 г. в Вашингтоне было основано «Общество по изучению будущего мира». В результате в 60-х гг. XX в. только в США насчитывалось 15 крупных институтов и организаций такого рода, в которых тысячи ученых занимались исследованием современного и прогнозированием будущего развития. Аналогичные учреждения возникли и в Европе: «Институт проблем будущего» в Вене, международный фонд «Человечество в 2000 году» в Нидерландах.

С позиций оценки глобальных прогнозов того времени немалый интерес и в наши дни может представлять научно-популярная книга двух немецких авторов под названием «Мир в 2000 году», переведенная на русский язык. Уже сам ее подзаголовок свидетельствует о том, что данная работа не представляет собой самостоятельного и оригинального исследования тенденций развития мировой экономики. В основу книги были положены разнообразные прогнозы, относящиеся к развитию отдельных отраслей хозяйства (черная металлургия, химия, транспорт, информационная техника), к окружающей среде (окружающая среда, ресурсы Мирового океана), а также к трудовым ресурсам, медицине, будущему городов. Характерно, что конечной датой рассматривавшихся Ш. Байнхауэром и Э. Шмакке прогнозов был 2000 год, что для того времени являлось довольно отдаленной перспективой. Книга двух авторов была выдержана не просто в оптимистических, но прямо-таки в восторженных тонах, что вообще было свойственно западной футурологии того периода.

Но затем, на рубеже 60-х и 70-х гг. XX в., появляются прогностические исследования совсем другого, гораздо более пессимистического плана. Об этом свидетельствуют и их названия: «Впереди бездна» (А. Печчеи), «Футурошок» (А. Тоффлер), «Планета под угрозой» (Р. Фолк) и др. Книга известного американского ученого А. Тоффлера, изданная в 1970 г., стала настоящим бестселлером, а сам термин «футурошок», т. е. шок от встречи человека с будущим, стал нарицательным. К этому перечню вызвавших большой резонанс работ прогностического характера следует добавить и книгу Г. Кана и Э. Винера «Год 2000». За основу своих расчетов они взяли показатель душевого ВВП (на уровне 1965 г.). Вывод их заключался в том, что для достижения тогдашнего уровня США странам Западной Европы потребовалось бы 10–20 лет, СССР – почти 30, Китаю – больше 100, Индии – почти 120, а Индонезии – почти 600 лет.

Но переломным моментом в глобальном моделировании оказалось начало 1970-х гг., когда стали появляться работы Римского клуба – международной организации по прогнозированию и моделированию развития всемирной системы. Римский клуб был основан в 1968 г. представителями десяти стран, собравшимися в Риме по инициативе видного общественного деятеля, управляющего концерном ФИАТ и впоследствии президента этого клуба Аурелио Печчеи. Именно с Римским клубом в первую очередь и связано зарождение и развитие такого нового направления исследований, как глобалистика, которое занимается изучением глобального мира и его проблем. Основной целью своей деятельности эта организация поставила привлечение внимания мировой общественности к глобальным проблемам человечества и к поискам путей их решения. Уже в начале 1970-х гг. Римский клуб объединял до ста известных ученых, общественных деятелей и представителей деловых кругов стран Запада, которые участвовали в его работе в качестве частных лиц, а свои исследования стали публиковать в виде докладов этому клубу. Пожалуй, наибольшую известность приобрели первые из этих докладов, тесно связанные с глобальными проблемами человечества. Кстати, и сам этот термин был введен в научный оборот именно в работах авторов Римского клуба.

Основополагающей работой, выдержанной в духе не просто футурологии как таковой, а именно глобального моделирования, следует считать книгу профессора Массачусетского технологического института в Бостоне Дж. Форрестера «Мировая динамика» (1971). В своей книге Дж. Форрестер при помощи математических моделей и компьютерной техники попытался имитировать динамику мирового развития. При этом автор рассматривал мир как единое целое, как систему взаимодействующих процессов: демографических, промышленных, исчерпания природных ресурсов, загрязнения окружающей среды, производства продуктов питания. А его расчеты и модели приводили к выводу о неизбежности серьезного кризиса во взаимоотношениях человека с окружающей средой, который можно было ожидать уже в начале XXI в. Книга Дж. Форрестера (она была переведена и на русский язык ) послужила своего рода фундаментом для последующих докладов Римскому клубу.

Первый из докладов был подготовлен в 1972 г. в США многонациональной группой ученых под руководством ученика Дж. Форрестера Д. Медоуза. Он назывался «Пределы роста» (The Limits of growth). Основное его содержание составляла кибернетическая модель развития человечества на ближайшие 130 лет, при разработке которой авторы исходили из анализа пяти главных тенденций глобального масштаба: ускоренной индустриализации, быстрого роста населения, широкого распространения голода и недоедания, исчерпания невозобновимых природных ресурсов и ухудшения среды обитания. Все они были «проиграны» с помощью ЭВМ в разных вариантах. При этом в качестве своеобразного эталона Д. Медоуз и его сотрудники исходили из следующих «контрольных цифр»: 1) общая потенциальная площадь пахотных земель на планете составляет 3,2 млрд га; 2) максимальная урожайность может быть в три раза выше уровня 1970 г.; 3) общие доступные запасы невозобновимых природных ресурсов в 200 раз больше уровня потребления 1970 г.; 4) уровень поглощения загрязнителей биосферой и основными ее подсистемами может быть в 25 раз выше, чем в природных экосистемах на уровне 1970 г.



Рис. 163. Основная модель глобального развития (по Д. Медоузу)

Содержание доклада Д. Медоуза носило ярко выраженный алармистский характер. В нем утверждалось, что при существующих на рубеже 60-х и 70-х гг. XX в. темпах прироста населения (удвоение за 33 года), роста промышленного производства (удвоение за 10–15 лет), тенденциях загрязнения окружающей среды, производства продовольствия, изъятия природных ресурсов «предел роста на этой планете будет достигнут в течение ближайших ста лет» (рис. 163). При этом уже в начале третьего тысячелетия человечество может в значительной степени утратить контроль над мировым развитием. Чтобы избежать грозящей глобальной катастрофы, авторы предложили «затормозить» и демографическое, и экономическое развитие мира, перейдя к «нулевому росту? и населения, и производства. По их расчетам, разрушение мировой системы еще можно было бы предотвратить, если бы удалось остановить рост населения в 1975 г., а промышленный рост – в 1985 г. «Пределы роста» получили огромный резонанс во всем мире. Одновременно общество раскололось на сторонников и противников «нулевого роста». И хотя противников его было больше, главная цель доклада, несомненно, была достигнута: после него к проблемам будущего человечества было привлечено всеобщее внимание.

В целом же «Пределы роста» произвели на мировое общественное мнение такое впечатление, что Римский клуб решил провести повторное исследование тех же проблем. В результате появился второй доклад Римскому клубу, подготовленный в 1974 г. профессором прикладной математики Кливлендского университета (США) М. Месаровичем и директором института механики в Ганновере (ФРГ) Э. Пестелем. Он назывался «Человечество на поворотном пункте» (Mankind at the Turning Point). Модель всемирной системы этих двух авторов делилась на «страты», или различные уровни и сферы иерархической системы. При этом рассматривались: «страта» среды обитания человека (климатические условия, вода, земля, экологические процессы); технологическая «страта» (биологические, химические, физические условия); демографическая и экономическая «страты»; групповые «страты», которые включали общественные условия; наконец, индивидуальная «страта», под которой подразумевался психический и биологический мир человека. В отличие от первой модели прогноз рассматривался только на 50 лет (1975–2025 гг.).

У модели М. Месаровича и Э. Пестеля было еще одно важное отличие от моделей Дж. Форрестера и Д. Медоуза, особенно важное для географов. Дело в том, что в двух первых моделях мир рассматривался как единое целое, без всякой внутренней регионализации. В работе же «Человечество на поворотном пункте» были впервые представлены региональные модели, причем в трех вариантах.

Чувствуя непопулярность, да и практическую невозможность осуществления идеи «нулевого роста», М. Месарович и Э. Пестель, наряду с ней, выдвинули концепцию сбалансированного («органического?) роста населения и экономики. Они также подчеркивали, что катастрофа грозит прежде всего развивающимся странам, где экономика, особенно с учетом демографического взрыва, не может исходить из «нулевого роста». Но этот рост необходимо как бы компенсировать более медленным экономическим развитием стран Севера.

Третий доклад Римскому клубу был подготовлен в 1976 г. группой ученых под руководством известного голландского математика и экономиста, лауреата Нобелевской премии по экономике Яна Тинбергена. Он назывался «Пересмотр международного порядка». Как показывает само это название, в докладе Я. Тинбергена – в соответствии с принятой Генеральной Ассамблеей ООН в 1974 г. развернутой программой установления такого порядка – анализировались перемены в международных экономических отношениях и перспективы их прогрессивного развития. Иными словами, речь шла о «наведении порядка» в мировой капиталистической системе торговли, кредитно-финансовых отношений, распределении продовольствия, сотрудничества в сфере наукии техники и т. д. А практические рекомендации доклада сводились в основном к постепенному «подтягиванию» развивающихся стран Азии, Африки и Латинской Америки к уровню более передовых стран. Я. Тинберген также исходил из концепции «органического роста» для всего мира. Этот доклад (он переведен и на русский язык) подвергался критике. В частности, за то, что, разделив весь мир на «мир богатых» и «мир бедных» наций, авторы не учитывали того, что и сами нации неоднородны по своему социальному составу.

В принципе алармистский характер первых докладов Римскому клубу можно понять. Ведь первая половина 70-х гг. XX в. была временем энергетического и сырьевого кризисов, пика демографического взрыва, резкого обострения продовольственной и экологической проблем, кризиса городов, роста безработицы, преступности и других социальных бедствий. В то время и во многих других публикациях, а также в программах «зеленых» отрицалась необходимость развития атомной (да и обычной тепловой) энергетики, выдвигались требования полного запрета сведения лесов, прекращения химизации сельского хозяйства, замены автомобиля велосипедом и т. д.

Во второй половине 70-х гг. XX в. появилось еще несколько докладов Римскому клубу. Хотя такого большого резонанса, как первые три, они не вызвали, важно отметить, что в них заметно ослабли сверхтревожные алармистские тенденции и уже не встречалась прежняя негативная реакция на прогресс науки и техники.

Это относится и к другим футурологическим исследованиям, опубликованным во второй половине 1970-х гг. В качестве примеров такого рода можно назвать книгу основателя и директора Гудзоновского института в США Германа Кана «Следующие 200 лет» (1976) или доклад группы экспертов ООН, подготовленный под руководством известного американского экономиста, лауреата Нобелевской премии по экономике Василия Леонтьева под названием «Будущее мировой экономики» (1977). В модели В. Леонтьева учитывалось взаимодействие 25 отраслей в 15 регионах мира, а также 8 видов загрязнения окружающей среды и 5 видов очистной деятельности. Уровни развития отдельных стран эксперты определяли по размерам душевого ВВП. Эта книга также была переведена на русский язык. Относительной реалистичностью отличалась и книга английского экономиста Э. Шумахера «Малое – это прекрасно. Экономика ради людей».

В первой половине 1980-х гг. урожай на футурологической ниве был не меньшим. Вся тональность глобальных прогнозов в эти годы довольно сильно изменилась. Экологический шок отошел на второй план, тогда как на первом оказалась «новая технократическая волна», связанная с переходом экономики развитых стран Запада к постиндустриальному обществу. Например, Г. Фридрихс и А. Шафф в своем докладе исходили из того, что благодаря миниатюризации, автоматизации, компьютеризации и роботизации микроэлектроника может принципиально преобразовать наш мир и позволить решить, казалось бы, непреодолимые проблемы, в том числе и глобального характера. Сам по себе здоровый оптимизм большинства этих работ следует только приветствовать. Однако некоторые из них рисовали, пожалуй, уж слишком идиллическую картину будущего.

В качестве примера можно привести зарисовку города будущего из книги Дж. Мартина «Телематическое общество». Город будущего, по мнению автора, – это парки, озера, клумбы, кристально чистый воздух. Большинство машин находится на громадных стоянках за чертой города. Под улицами проведены кабельные сети, обеспечивающие все возможные виды коммуникаций. Нет необходимости в частых поездках по городу, как прежде. Банковские операции осуществляются прямо из дома, равно как и приобретение товаров. Всячески поощряется работа на дому, выполняемая при помощи терминалов и видеофонов, передающих изображения, документы и речь. Встречи и всякого рода рабочие конференции осуществляются по телекоммуникационным сетям, охватывая удаленных друг от друга участников. Преступность канула в прошлое, уличных ограблений не происходит, потому что люди носят при себе мало наличности, расплачиваясь при помощи банковских карточек, которые могут быть использованы только их владельцами. Жители города имеют специальные радиоустройства, при помощи которых автоматически вызывается полиция и «скорая помощь». Дома снабжены сигнальными системами на случай пожара. Подключив карманный компьютерный терминал в любом месте к сетям связи, можно за считанные минуты запросить сведения, скажем, о хорошем ресторане, расписании движения самолетов, театральных спектаклях, связаться с медицинскими учреждениями, компьютером на бирже, самому послать сообщение и даже затребовать из специального развлекательного банка данных остроту на нужную тему…

Однако во второй половине 80-х – первой половине 90-х гг. XX в. ситуация на «рынке» глобального моделирования снова несколько изменилась.

В прогнозах и моделях опять стал чувствоваться «футурошок». Об этом свидетельствуют материалы Международной комиссии по окружающей среде и развитию, созданной в 1983 г. по инициативе ООН, озаглавленные «Наше общее будущее», а также «Повестка дня на XXI век», принятая в 1992 г. на Конференции ООН по окружающей среде и развитию в Рио-де-Жанейро.

В этом смысле наибольший интерес представляет новая книга Д. Медоуза и его соавторов «За пределами роста» (1992), вышедшая через 20 лет после первой. Признавая, что за это время в мире произошли большие перемены, авторы в целом остаются на своих прежних позициях и подтверждают те главные выводы, к которым пришли еще в 1972 г. Во-первых, о том, что темпы использования человечеством многих важных видов ресурсов и темпы производства многих видов загрязнений уже превышают допустимые пределы и, следовательно, без существенного уменьшения потоков материальных и энергетических ресурсов в ближайшие десятилетия произойдет неконтролируемое сокращение душевых показателей производства продуктов питания, потребления энергии и промышленного производства. Во-вторых, о том, что это сокращение не является неизбежным, но, чтобы его предотвратить, необходим переход к такой политике и практике, которые способствовали бы уменьшению роста численности населения и уровня материального потребления и одновременно быстрому повышению эффективности использования материальных и энергетических ресурсов. В-третьих, о том, что технологически и экономически создание устойчивого общества пока еще возможно.

В 1990-х гг. значительно расширился и сам клуб глобальных «модельеров». Ныне составлением глобальных футурологических моделей занимаются Институт мировых ресурсов в Вашингтоне, Стокгольмский институт окружающей среды, Международный институт экологической технологии и управления, Мировой банк, Конференция ООН по торговле и развитию (ЮНКТАД) и многие другие организации. Но среди них особого внимания заслуживают два института. Это Институт Всемирного наблюдения («Уорлдуотч») в Вашингтоне, возглавляемый известным ученым Лестером Брауном и регулярно публикующий свои обзоры и прогнозы (три из них переведены на русский язык ), а также Международный институт прикладного системного анализа (МИПСА) в Вене, который ведет разработки по трем главным направлениям: 1) изменение окружающей среды в глобальных масштабах; 2) глобальные экономические преобразования; 3) методологические основы анализа глобальных проблем. Наряду с этим он занимается и глобальными прогнозами в области народонаселения.

В дальнейшем появились также интересные прогнозы американских географов, например С. Коэна, касающиеся будущего политической карты мира. Согласно этим прогнозам, столь характерный для наших дней процесс распада государств будет продолжаться и впредь, в результате чего через 20–30 лет количество независимых стран может достигнуть примерно 300 (по сравнению с 57 в 1900 г., 71 в 1938 г., 92 в 1959 г. и 193 в 2000 г.). Например, С. Коэн считает, что в Европе независимыми государствами станут Фландрия, Валлония, Бретань, Уэльс, Шотландия, Каталония, Страна Басков, в Азии – о. Минданао, Пенджаб, Тибет, в Африке – Катанга, в Северной Америке – Французская Канада. Предсказывается возможный распад Австралии, Афганистана, ЮАР, Судана, Бразилии, Мексики, а также (хотя бы отчасти) России и Китая. В основе таких прогнозов лежит тенденция к политическому самоопределению, столь отчетливо проявляющаяся в наши дни.

Другой американский специалист, профессор Гарвардского университета P. Купер, опубликовал свой геополитический прогноз, согласно которому уже в первые десятилетия XXI в. в мире появятся как новые «Южные Кореи», быстро развивающиеся по демократическому пути, так и новые «Ираки», следующие курсом тоталитаризма. В американской же печати недавно появился прогноз, исходящий из того, что в случае сохранения нынешних сепаратистских тенденций к 2100 г. общее число стран мира может достигнуть 2000! Среди наиболее очевидных кандидатов названы Шотландия, Квебек, Палестина, Косово, Тибет, Кашмир, Курдистан, Чечня, Южная Осетия, Тимор, Биафра (Нигерия).

Говоря о глобальных геополитических прогнозах, можно отметить, что после окончания «холодной войны» и противоборства между социализмом и капитализмом в центре внимания оказались взаимоотношения между «богатым Севером» и «бедным Югом», который стал все активнее выступать против глобализации, происходящей под эгидой единственной мировой сверхдержавы – США. Отныне главное внимание футурологов начала привлекать проблема диалога цивилизаций и определения вероятности нарушения такого диалога и столкновения цивилизаций в более или менее отдаленном будущем. В первую очередь речь шла о постепенно обостряющихся отношениях между европейско-американской и исламской цивилизациями, взгляды которых на человеческие ценности и перспективы мирового развития оказались едва ли не противоположными. Что же касается событий осени 2001 г. (террористические акты исламистов в США и ответные удары по Афганистану), то многие аналитики рассматривают их как коренной сдвиг во всем современном мировом геополитическом порядке.

Рис. 164. Геостратегический модуль (по А. И. Неклессе)

Наиболее полное представление о классической западной прогностике второй половины XX в. может дать книга «Впереди XXI век».

Попытки создания глобальных прогнозов предпринимались и предпринимаются и некоторыми отечественными учеными – Д. М. Гвишиани, Н. Н. Моисеевым, И. В. Бестужевым-Ладой, А. И. Неклессой и др. Большинство из них можно, пожалуй, отнести к категории геополитических, геостратегических. Например, академик Н. Н. Моисеев развивал идею о возникновении в 1990-е гг. Американского Мира (PAX AMERICANA) и о его будущем. В модели, предложенной А. И. Неклессой, в качестве основных составных частей будущего миропорядка рассматриваются Атлантический и Тихоокеанский миры, Индоокеанская дуга и «сухопутный океан» Евразии (рис. 164). Остальные глобальные прогнозы имеют социально-экономический, демографический и экологический характер.

На фоне нарастания глобальных проблем мно­гие ученые стали искать пути их решения и делать глобальные прогнозы на будущее. По­добное социальное прогнозирование часто на­зывают футурологией. Футурология (от лат. futurum - будущее + греч. logos - слово, учение) - это своего рода наука о будущем, совокупность представлений о перспективах развития человечества, о предстоящих изменениях в социальных процессах. Выводы футурологов имеют большое практическое значение для политики. Ориентируясь на них и сопоставляя предлагаемые альтернативные решения тех или иных проблем, го­сударства могут определять наиболее оптимальные пути движе­ния общества, тормозить развитие негативных явлений и, наобо­рот, усиливать благоприятные тенденции. В социальном прогно­зировании используются два основных взаимосвязанных метода: экстраполяцию и моделирование.

Метод экстраполяции (от лат. extra - сверх + polio выправ­ляю, изменяю) предлагает продолжение в будущее существующих тенденций, определение перспектив по данным прошлого. Напри­мер, прогнозируя будущие численность и структуру населения, от­талкиваются * от сложившихся темпов его прироста, * от уже про­исходящих в обществе процессов урбанизации, * сближения со­циальных слоев, * увеличения доли среднего класса и т.д. При этом, однако, футурологи не просто «прикладывают» прошлое к будуще­му, а учитывают возможные изменения или ускорение развития со­циальных процессов.

Моделирование , как уже отмечалось (с. 13). предполагает построение различных теоретических моделей. Эти модели (про­екты, или сценарии) описывают варианты будущих состояний социальных процессов. Глобальное моделирование требует мно­годисциплинарного подхода, т. с. использования результатов ис­следований многих наук. Поэтому не случайно ведущие ученые «глобалисты» разных стран создали (в 1968) особую междуна­родную общественную организацию (так называемый Римский клуб), чтобы объединенными усилиями исследовать глобальные проблемы и предложить возможные пути их решения. При этом среди ученых, естественно, выявились свои пессимисты и опти­мисты.

Представители так называемого экологического пессимизма и алармизма рисуют «катастрофические» картины будущего с ве­роятной и даже неизбежной гибелью человечества. Глобальные проблемы, по их мнению, вряд ли разрешимы без остановки или резкого ограничения роста населения и технико-экономического развития.

Так, в одном из исследовании {модель «Мир-3») начала 1970-х американский кибернетик Джей Форрестер (род. в 1918) и его последователи проанализировали взаимосвязь пяти переменных по­казателей - * капитальных вложений, * населения, * продовольствия, * природных ресурсов и * загрязнения окружающей среды. При этом был сделан вывод, что мир приближается к «естественным преде­лам роста», т. е. к недопустимой чрезмерности увеличения населения, производства и потребления, загрязнения окружающей среды и необеспеченности природными ресурсами и продовольствием. Если существующие тенденции развития сохранятся, человечество ждет глобальная катастрофа в 1-й половине XXI века (запредельное заг­рязнение среды обитания, взрыв смертности, истощение природных ресурсов, упадок производства и качества жизни людей). Чтобы из­бежать такого исхода, мировое сообщество, по мнению исследователей, должно перейти к так называемому «нулевому росту», т. е. лишь к поддержанию численности населения и объемов производства на достигнутом уровне.


В отличие от этого сторонники так называемого научно-технического оптимизма (или технологического оптимизма) в раз­решении глобальных проблем возлагают большие надежды на человеческий разум и научно-техническую революцию. Они пред­лагают радикальную перестройку технологий (устранение «гряз­ных» производств; использование чистых источников энергии - водной, солнечной, ветровой; применение замкнутых, ресурсос­берегающих производственных циклов) и переход к экологичной экономике, изначально предполагающей расходы не только на освоение природы, но и на ее охрану и восстановление. Эти и другие меры, по прогнозам оптимистов, помогут решить многие острые проблемы современности и обеспечат человечеству соци­ально-экономический прогресс.