Ликвидация бизнеса. Приказы. Оборудование для бизнеса. Бухгалтерия и кадры
Поиск по сайту

Жидкокристаллические индикаторы. Рекомендации по применению жки. Принцип действия и конструктивные модификации жидкокристаллических индикаторов

Подключение ЖК индикаторов с использованием разъёмов.

    Некоторые типы разъёмов - например штыревые - не обеспечивают надёжного электрического контакта при наличии механических напряжений в разъёме. Что может привести к выходу ЖК индикатора из строя!
    Механические напряжения могут возникать по очень многим причинам: несоосность разъёма и крепёжных деталей индикатора, перекос в разъёме, колебания температуры, от частой замены индикаторов, при внешних механических воздействиях на индикатор и/или изделие целиком.

    Поэтому рекомендуется подключать ЖК индикатор методом пайки.
    Или, по крайней мере, не использовать разъёмы непосредственно между платой ЖК индикатора и другой платой. А соединять ЖК индикатор с основной платой с использованием шлейфа, который уже можно подключать как пайкой, так и с использованием разъёмов.
    Можно подключать ЖК индикатор и любым другим методом, исключающим возникновение механических напряжений в разъёмах.

4-х битный режим в буквенно-цифровых ЖК индикаторах.

    1. В 4-х битном режиме включения ЖК индикаторов недопустимо изменение состояний сигналов R/W и A0 в течении всего цикла передачи байта, в том числе и при неактивном сигнале E между двумя передачами полубайтов. По любому изменению сигналов R/W и A0 внутренний счётчик полубайтов в ЖК индикаторе сбрасывается в состояние приёма старшего полубайта. Это является отличием наших ЖК индикаторов от импортных аналогов и направлено на повышение надёжности работы ЖК индикатора.

    2. Все циклы обращения к индикатору должны быть парными (обязательно передавать и старший и младший полубайты). Единственное исключение - первые четыре команды в процедуре инициализации.
    Или перед передачей старшего полубайта использовать возможность сброса внутреннего счётчика полубайтов в ЖК индикаторе из пункта 1. В последнем случае теряется совместимость с импортными ЖК индикаторами.

    3. Младшие 4 бита шины данных можно оставлять неподключенными - в ЖК индикаторе вся шина данных подтянута к Ucc через высокоомные резисторы.

    4. И не надо забывать выбирать правильный тип интерфейса (4 или 8 бит) при смене страницы кодировки знакогенератора.

Сколько реально памяти в ЖК индикаторах?

    Во всех буквенно-цифровых ЖК индикаторах встроено 80 байтов внутренней памяти. Адреса памяти лучше уточнить по документации на ЖК индикатор. Часть памяти отображается на индикаторе, но вся память доступна как по записи, так и по чтению. Память сохраняет свое содержимое пока включено питание ЖК индикатора, независимо от того, включен или выключен ЖК индикатор.

    В графических ЖК индикаторах встроенной памяти:
    MT-6116 = 80 байтов/строку * 4 строки = 320 байтов (отображается 61 байт/строку * 2 строки);
    MT-6464 = 64 байта/строку * 8 строк = 512 байта (отображается 64 байта/строку * 8 строк).
    MT-12232 = 80 байтов/строку * 4 строки * 2 кристалла = 640 байтов (отображается 61 байт/строку * 4 строки * 2 половины ЖКИ);
    MT-12864 = 64 байта/строку * 8 строк * 2 кристалла = 1024 байта (отображается 64 байта/строку * 8 строк * 2 половины ЖКИ).
    Размер памяти от буквенного суффикса ЖК индикатора не зависит.

    В сегментных индикаторах с параллельным интерфейсом (MT-10T7, MT-10T8, MT-10T9) чтение встроенной памяти невозможно, размер памяти 10 байтов + триггер блокировки.

Работают ли ЖК индикаторы с высокоскоростными контроллёрами? Какова максимальная скорость заполнения?

    Да, работают. Но надо не забывать про времена предустановки и удержания сигналов.

    Максимальная скорость записи в индикаторы:
    MT-**S* (MT-10S1, MT-20S1, MT-16S2, MT-24S2, MT-20S4, ...) - 25-30 тысяч символов/сек;
    MT-6116, MT-12232 - 0.5-1 млн. байтов/сек (4-8 млн. точек/сек);
    MT-12864, MT-6464 - 100-130 тысяч байтов/сек (1 млн. точек/сек).
    Для индикаторов с двумя кристаллами (MT-12232, MT-12864) возможен вариант поочерёдной записи в правый/левый кристалл - это позволяет практически в два раза увеличить скорость записи. Но за счёт усложнения программы.
    Большие (из указанных) скорости достигаются при опросе готовности индикаторов - за исключением индикаторов MT-6116 и MT-12232, для которых выгоднее выдержать паузу между сигналами E, чем опрашивать готовность индикатора.

Как правильно включать подсветку ЖК индикатора?

    Все ЖК индикаторы рассчитаны на питание подсветки от источника питания самого индикатора. Т.е. плюс подсветки (вывод A) на вывод Ucc, минус подсветки (вывод K)- на вывод GND. Это верно как для 5-ти вольтовых индикаторов, так и для 3-х вольтовых.

Как регулировать контрастность ЖК индикатора?

    1. Сегментные ЖК индикаторы с параллельным интерфейсом (MT-10T7, MT-10T8, MT-10T9): контрастность регулируется изменением номинала резистора между выводами Uo и GND, как описано в PDF на индикатор.

    2. Буквенно-цифровые ЖК индикаторы с 3-х вольтовым питанием: контрастность не регулируется.

    3. Буквенно-цифровые ЖК индикаторы с 5-ти вольтовым питанием: контрастность регулируется изменением напряжения на выводе Uo в пределах примерно -2В..+2В относительно GND. Обратите книмание, что недопустимо подавать на вывод Uo напряжение, приближающееся к напряжению питания индикатора (Ucc)! Напряжение на выводе Uo должно хотя бы на 1В меньше напряжения питания индикатора! Иначе ЖК индикатор выходит из строя.

    4. Графические индикаторы MT-6464*: контрастность регулируется изменением напряжения на выводе Uo, как описано в PDF на индикатор.

    5. Графические индикаторы MT-12232*: контрастность не регулируется.

    6. Графические индикаторы MT-12864*: контрастность регулируется изменением номинала резистора между выводами Uo и Uee, как описано в PDF на индикатор.

    В любом случае, лучше уточнить в документации на конкретный ЖК индикатор. Если есть сомнения в правильности сведений в документации - свяжитесь с нами или спросите на форуме.

Можно ли подключать 5-ти вольтовый ЖК индикатор к 3-х вольтовому контроллёру?

    В принципе, можно. Но надо учитывать разность в уровнях логических сигналов: для некоторых индикаторов уровень логической 1 может оказаться выше, чем способен сформировать управляющий контроллёр. Например, это касается вывода RES индикатора MT-12864, уровень лог.1 которого может быть не менее 3.75В (0.7*5.5В), хотя остальные выводы имеют уровень лог.1 всего 2.4В.

    Также, проблемы будут при использовании операции чтения из ЖК индикатора. В цикле чтения ЖК индикатор честно выдаст на выводы напряжение лог.1 вплоть до 5В и ток потечёт через защитные диоды в управляющем контроллёре, что может повлечь выход из строя как ЖК индикатора, так и управляющего контроллёра. Необходимо предусматривать схемы согласования уровней, ограничения тока по выводам и тому подобные меры.

Как правильно подавать команды в буквенно-цифровые и графические ЖК индикаторы?

    Есть несколько вариантов, выберите наиболее подходящий Вам или придумайте новый, не противоречащий документации на ЖК индикатор.

    1. Перед (или после) каждого цикла обращения выдерживать паузу не менее указанной в документации. Это самый простой, но и самый неоптимальный по затратам времени управляющего контроллёра способ.

    2. После каждого цикла обращений к ЖК индикатору опрашивать бит занятости и ждать пока индикатор не выполнит посланную команду. Это способ лучше первого, но всё ещё весьма неоптимальный.

    3. Ждать готовности ЖК индикатора перед каждым циклом обращения. Это, вероятно, самый удобный вариант управления ЖК индикатором из основной программы (не из прерываний). Хотя он и не обеспечивает минимальных затрат времени управляющим контроллёром на работу с ЖК индикатором, но освобождает максимум времени для других действий, кроме работы с индикатором.

    4. Можно так написать программу, выдающую команды в ЖК индикатор, чтобы между любыми двумя последовательными циклами обращений проходило не менее указанного в документации времени. Этот способ оптимален по затратам времени управляющего контроллёра (не делается ничего лишнего) и скорости вывода информации в ЖК индикатор, но весьма сложен в написании и отладке.

    5. Если циклы обращений к ЖК индикатору формируются в прерывании, то можно настроить частоту прерываний так, чтобы между вызовами проходило не менее указанного в документации на индикатор времени паузы. Если в системе допустимо иметь такие низкую частоту прерываний и скорость вывода информации в ЖК индикатор, то этот способ, наверно, лучший.

    6. Если нужна высокая скорость прерываний или вывода информации на ЖК индикатор, можно в прерывании опросить готовность индикатора и, если не готов, выйти из прерывания не формируя цикла обращения к индикатору.

    Разумеется, это не все возможные варианты, но их вполне достаточно в большинстве случаев.

Как правильно проверить готовность ЖК индикатора к обмену данными?

    В наиболее общем случае надо выполнить цикл чтения информации из ЖК индикатора, установив управляющие сигналы для получения байта статуса и проверить бит BUSY в считанном байте. Для буквенно-цифровых ЖК индикаторов с 4-х битным режимом включения надо не забывать получать оба полубайта, независимо готов или нет индикатор. Для управляющих контроллёров, в которых возможно выбирать режим работы шины данных (на ввод или на вывод) надо также не забывать переключать шину данных на ввод до формирования импульса E (строба чтения).

    Для буквенно-цифровых и графических ЖК индикаторов возможен и более быстрый способ проверки флага BUSY: начать цикл чтения, но проверять бит BUSY сразу на шине данных, не сбрасывая строб E, только лишь выдержав время задержки выдачи данных индикатором. При этом можно сохранять строб E активным до обнаружения сброса флага BUSY и только потом завершить цикл чтения байта статуса. Но завершить правильно необходимо в любом случае - например, для буквенно-цифровых индикаторов с 4-х битным режимом включения обязательно надо получить и младший полубайт байта статуса, хотя бит BUSY находится в старшем полубайте и, казалось бы, читать ещё и младший лишнее. Нет, не лишнее!

Могут ли ЖК индикаторы работать при отрицательных температурах?

    Мы выпускаем несколько разновидностей ЖК индикаторов, многие из которых предназначены для эксплуатации, в том числе, и при отрицательных температурах. Серийно производятся ЖК индикаторы с рабочей температурой до -30°C (температура хранения при этом до -40°C). Максимально допустимая рабочая температура от +50°C до +70°C (температура хранения от +60°C до +80°C). Но при применении ЖК индикаторов с расширенным температурным диапазоном надо понимать, что они, во-первых, дороже; во-вторых, при отрицательной температуре существенно возрастает время смены информации на стекле ЖК индикатора (от 0.2с при +20°C до 7с при -20°C и 15с при -30°C). Это время от записи новой информации в индикатор до окончания (на глаз) переходных процессов в стекле ЖК индикатора. Если информация в ОЗУ индикатора при записи не изменяется, то и никаких переходных процессов не будет. Т.е. время на переходные процессы нужно только при смене выводимой информации. К времени записи информации во внутреннее ОЗУ индикатора это время отношения не имеет.
    Если выводить меняющуюся информацию в индикатор чаще, чем указанное время, то ничего не испортится, но на индикаторе видно будет нечто среднее между старой и новой информацией.

Можно ли сменить тип интерфейса управления ЖК индикатором?

    Да, для ЖК индикаторов MT-6116, MT-6116B, MT-12232B можно сменить тип интерфейса управления с 68000 на 8080. При этом сигнал R/W станет сигналом /WR, а сигнал E - сигналом /RD. Активным может быть всегда только один из них. Выбор типа интерфейса 8080 осуществляется подачей на вывод RES перепада с лог.1 на лог.0 и оставлением лог.0 на всё время работы ЖК индикатора.
    Подробнее смотрите документацию на кристалл КБ145ВГ4 (Ангстрем) или SED1520DOA. Или связывайтесь с нами.

    Для ЖК индикаторов MT-12232A, MT-12232C и MT-12232D смена типа интерфейса также физически возможна, но из-за наличия в схеме индикатора дешифратора обращений к двум кристаллам приведёт к неработоспособности ЖК индикатора.

Особенности ЖК индикаторов MT-6116, MT-12232.

    Все ЖК индикаторы MT-6116 и MT-12232 основаны на одном и том же кристалле и имеют некоторые особенности, которые надо учитывать при проектировании изделий на данных индикаторах:

    1. Хотя в индикаторе присутствует цепь начального сброса по включению питания, часто её оказывается недостаточно и для правильной работы индикатора надо подавать сигнал сброса снаружи. Эти индикаторы сбрасываются любым перепадом на выводе RES (и 0->1, и 1->0), причём этот же вывод выбирает тип интерфейса управления. Поэтому желательно подавать внешний сигнал сброса ЖКИ на вывод RES - удерживая RES=лог.0 не менее 10 мкс после подачи напряжения питания на ЖКИ и потом подавая перепад лог.0 -> лог.1 с длительностью фронта не более 10 мкс. До момента подачи перепада 0->1 ЖК индикатор может выдавать на шину данных случайную информацию (зависит от управляющих сигналов R/W, A0, E) и надо обеспечить режим ввода (или Z-состояние) по шине данных в управляющем контроллёре на это время.
    Если же импульс сброса будет формироваться и в процессе работы, не только при включении питания, то на всё время лог.0 на выводе RES также надо переводить шину данных управляющего контроллёра в режим ввода (или Z-состояние) для исключения конфликта на шине.

    2. Для ускорения обновления индикатора предусмотрен специальный режим чтения-модификация-запись , при котором адрес столбца увеличивается только после записи (флаг RMW). После установки этого режима можно прочитать байт из индикатора, при необходимости изменить его и записать обратно в индикатор, не добавляя команд установки адреса столбца. Без этого режима последовательность была бы следующей: установить адрес столбца, прочитать данные, снова установить тот же адрес столбца, записать новые данные. Здесь на целых две операции больше (если выполнять модификацию нескольких последовательных байтов).

    3. С другой стороны, с включенным режимом чтения-модификация-запись ЖК индикатор не обрабатывает многие команды (например, точно не работает команда установки страницы). Поэтому надо не забывать сбрасывать этот режим, когда он не нужен.
    И в процедуре инициализации в нашей документации не для всех индикаторов этот режим сбрасывается и может оказаться, что после включения питания режим окажется установленным. В этом случае ЖК индикатор будет работать неправильно. Лучше добавить в процедуру инициализации команду сброса режима RMW.

    4. При чтении информации из внутренней памяти индикатора нужно делать "пустой" цикл чтения - после команд установки адреса столбца первый цикл чтения не выдаст полезной информации, реальные данные будут выданы только начиная со второго цикла чтения. Для чтения байта статуса лишних циклов чтения делать не надо.

    5. Так как кристаллы в индикаторе независимы, то опрашивать надо оба байта статуса. Или, по крайней мере, из того кристалла, к которому будет обращение.

    6. По той же причине (независимость кристаллов) для правильной работы ЖК индикатора необходимо провести начальную инициализацию для обоих кристаллов индикатора. При инициализации только одного из двух кристаллов индикатор что-то показывать будет, но картинка правильной не будет даже на половине индикатора.

Особенности ЖК индикаторов MT-6464 и MT-12864.

    В нашей документации на ЖК индикатор забыто указание на минимальное время паузы между циклами обращения к индикатору: 10 мкс. Можно или выдерживать данное время, или проверять флаг занятости индикатора.

    Также не указано, что при чтении информации из внутренней памяти индикатора нужно делать "пустой" цикл чтения - после команды установки адреса первый цикл чтения не выдаст полезной информации, реальные данные будут выданы только начиная со второго цикла чтения.
    Для чтения байта статуса лишних циклов чтения делать не надо.

    Так как кристаллы в индикаторе независимы, то опрашивать надо оба байта статуса. Или, по крайней мере, из того кристалла, к которому будет обращение.
    По той же причине (независимость кристаллов) для правильной работы ЖК индикатора необходимо провести начальную инициализацию для обоих кристаллов индикатора.

В документации не указаны входные и выходные токи для индикаторов.

    Индикаторы обеспечивают указанные в документации выходные напряжения при следующих максимальных выходных токах:
    1. Все буквенно-цифровые (MT-**S*): Ioh=0.4мА, Iol=1.2мА.
    2. MT-6116*: Ioh=0.4мА, Iol=0.4мА.
    3. MT-6464*: Ioh=0.2мА, Iol=1.6мА.
    4. MT-12232*: Ioh=0.4мА, Iol=0.4мА.
    5. MT-12864*: Ioh=0.2мА, Iol=1.6мА.

    Входные токи для индикаторов указаны в документации на индикатор, за исключением MT-6116*, MT-12232*:
    1. MT-6116*: Iih=Iil=3мкА.
    2. MT-12232*: Iih=Iil=3мкА.

Можно ли как нибудь быстро проверить работоспособность ЖК индикатора?

ЖК индикатор ничего не показывает, что делать?

    Чаще всего, информация на ЖК индикаторе не появляется по причине неверно выставленной контрастности - реально индикатор работает, изображение есть, но его не видно. Проверить это можно чтением записанной ранее информации из ЖК индикатора (неприменимо для сегментных индикаторов).

    Если есть подозрение на неисправность ЖК индикатора, рекомендуем:
    * проверить наличие питания ЖКИ,
    * уровни управляющих сигналов,
    * настройку контрастности,
    * отсутствие помех на управляющих выводах и питании ЖКИ,
    * форму управляющих сигналов (особенно при длинном кабеле подключения индикатора),
    * соблюдение временных параметров при управлении индикатором,
    * правильность процедуры начальной инициализации индикатора,
    * попробовать подключить индикатор к LPT порту компьютера и проверить исправность индикатора программой из предыдущего пункта,
    * включить другой аналогичный ЖК индикатор,
    * обратиться к нам.

А нет ли примера программы для вывода на ЖК индикатор?

    Есть, вот с примерами программ для вывода на наши ЖК индикаторы. Программы написаны на подобии языка C и предназначены для пояснения алгоритмов работы с ЖКИ. Они подробно прокомментированы, но компилиться не будут - нужно доопределить функцию задержки времени и имена сигналов управления ЖКИ.

Не нашли ответа на свой вопрос? Свяжитесь с нами.

    На этом сайте работает , где мы отвечаем на любые вопросы по нашим ЖКИ. Рекомендуем, прежде чем писать письмо с вопросами, внимательно с ним ознакомиться.

    .
    По техническим вопросам: Козлов Сергей Владимирович "Kozlov@сайт".
    .
    По вопросам закупок: Отдел продаж "Sales@сайт".

Квантовая и оптическая электроника. Лекция N 1 1

ПАССИВНЫЕ ИНДИКАТОРЫ

В эту группу входят три вида пассивных индикаторов: жидкокристаллические индикаторы (ЖКИ), электрохромные и электрофоретические индикаторы (ЭХИ и ЭФИ). Последние два, в свою очередь, входят в состав электрохимических пассивных индикаторов.

1.Жидкокристаллические индикаторы

Принцип действия жидкокристаллических индикаторов (ЖКИ) основан на изменении оптических свойств жидких кристаллов под действием электрического поля. В отличие от активных индикаторов ЖКИ не генерируют оптическое излучение, а модулируют его интенсивность за счет изменения таких характеристик, как амплитуда, фаза, длина волны, плоскость поляризации и направление распространения.

Жидкокристаллические индикаторы (ЖКИ) являются пассивными индикаторами, преобразующими падающий на них свет.

Жидкокристаллическое или мезоморфно е состояние - это состояние вещества, при котором оно обладает свойствами, присущими как твердым кристаллам, так и жидкостям.

Рис.1


идкие кристаллы (ЖК) – это анизотропные жидкости, электрические и оптические свойства которых зависят от направления их наблюдения. В ЖК наблюдаются электрооптические эффекты, связанные с движением вещества: - динамическое рассеяние(ДР) , а также с поворотом молекул в электрическом поле - твист-эффект (ТЭ) и эффект гость - хозяин (Г-Х) .

Конструкции жки

Конструктивные схемы ЖКИ показаны на Рис.1.

Основой простейшего индикаторного элемента с использованием ЖК являются две стеклянные пластины. Вне зависимости от используемого электрооптического эффекта ЖКИ разделяются на два класса: индикаторы, работающие на просвет, и индикаторы, работающие на отражение. У первых (Рис.1.а) обе стеклянные пластины прозрачны; электродами служат прозрачные электропроводящие пленки (например, двуокись олова), между которыми помещено ЖК вещество. За индикатором помещается источник света. Цвет и яркость индикатора определяются цветом и яркостью источника света. У вторых: (Рис.1.б) «задний» электрод изготовлен в виде зеркала. Такой индикатор использует внешнее отражающее освещение (специальная подсветка отсутствует).

К

Рис.3

онфигурация электродов индикатора определяетсялибо формой исходных стеклянных пластин, либо технологией металлизации. Как правило, пластины и электроды плоские, но в ряде приборов внутренняя поверхность задней пластины имеет сложную форму (Рис.2), образующую ряд оптических элементов, обеспечивающих отражение излучения в направлении источника света.

В ЖКИ, работающем на основе ДР , при приложении электрического поля напряжённостью около 5 кВ/см (примерно 30 В - к пленке ЖК толщиной 0,25 мм) молекулы переориентируются, возникают турбулентность и сильное оптическое рассеяние. Материал, прозрачный в отсутствие поля, становится непрозрачным. В таком ЖКИ, работающем на отражение, задний электрод представляет собой зеркало, на котором при подаче напряжения появляются участки молочно-белого цвета, форма которых соответствует конфигурации электродов. Для повышения однородности и четкости изображения, а также срока службы на поверхность проводящих слоев наносится тонкое химически инертное по отношению к ЖК оптически прозрачное покрытие. Материалом таких покрытий служат винилацетатные смолы, смолы на основе этилена, эпоксидные компаунды и т.д. (Рис.3).

Заднюю стеклянную пластину индикатора чернят (Рис.4); тогда на черном фоне возникает белое изображение.

В

Рис.4

ЖКИ с использованием ТЭ , работающем на отражение, стеклянные пластины расположены между двумя скрещенными поляризаторами, за задним из которых помещен диффузный отражатель. Поверхности пластин, обращенные к ЖК, полируются, чтобы молекулы ЖК в слоях, прилегающих к ним, ориентировались во взаимно перпендикулярных направлениях; в промежуточных слоях осуществляется постепенный поворот направлений ориентации. В отсутствие электрического поля длинные оси молекул ЖК плавно поворачиваются на 90 0 , так что оси поляризации правой и левой плоскостей кристалла оказываются расположенными под прямым углом. В этом случае свет, проходящий через поляризатор, падает на ЖК слой и, поворачиваясь на 90 0 за счёт расположения молекул ЖК, достигает второго поляризатора. Т.о. оба поляризатора оказываются прозрачными для падающего света; свет проходит через индикатор. При наличии электрического поля ориентация молекул изменяется, плоскость поляризации света, проходящего через индикатор, не вращается и свет не проходит через индикатор. Так как отражатель диффузный, на слабоокрашенном сером фоне отображаются темные знаки.

В ЖКИ на основе ТЭ, работающем на просвет, поляризаторы устанавливают так, чтобы их плоскости поляризации были параллельны друг другу. Индикатор не пропускает свет в отсутствие электрического поля и пропускает при подаче напряжения.

В индикаторах на эффекте Г-Х тонкий слой ЖК - «хозяина» взаимодействует с молекулами «гостя» (красителя). Слой ЖК - хозяина за счет поглощения световой энергии при отсутствии электрического поля приобретает характерную для красителя (гостя) окраску: под воздействием электрического поля он обесцвечивается. Но существуют также вещества гостя и хозяина, в которых окрашивание происходит под воздействием электрического поля. Цветовые различия в индикаторах на эффекте Г-Х хорошо воспринимаются в условиях высокой освещенности даже при небольшом яркостном контрасте. Для повышения механической прочности и влагостойкости ЖКИ используют специальные защитные конструкции .

Индикаторы на эффекте ДР и ТЭ преимущественно применяются там, где экономичность играет решающую роль: в электронных наручных часах, микрокалькуляторах с автономным питанием, портативных многофункциональных измерительных приборах, индикаторах для переносных радиоприемников, магнитофонов, автомобильных индикаторных устройствах и т. п.

В

Рис.5

жидкокристаллических индикаторах, предназначенных для работы в условиях низкой освещенности (менее 35 кд/м 2), применяют подсветку .

Основные параметры ЖКИ :

    Контрастность К и пропускание - это отношение интенсивности света, выходящего из ЖК ячейки в исходном состоянии, к интенсивности света в возбужденном состоянии ЖК ячейки называется пропусканием, если наблюдение ведется в направлении навстречу входящему лучу и контрастностью во всех других случаях.

    Пороговое напряжение U nop и управляющее напряжение U ynp . Эти значения напряжений определяются по коэффициенту рассеяния света в ячейке (К р) . Зависимость коэффициента рассеяния света от напряжения, приложенного к электродам ячейки, показана на Рис.5. Пороговое напряжение U nop соответствует значению Кр=0,05. Управляющее напряжение U упр - значению Кр=0,5. Значение U пор для индикатора, использующего эффект ДР, увеличиваться на низких и высоких частотах (индикатор становится менее эффективным). Индикаторы на основе ТЭ обычно используют на частотах 1...10 кГц. В справочных данных индикаторов указывают рекомендуемую частоту управляющего напряжения.

    Время включения (реакции) Т вкл – это время, в течение которого контрастность достигает 90% установившегося значения.

    Время выключения (релаксации) Т выкл – это время уменьшения контрастности от 90 до 10% установившегося значения.

    Долговечность. В процессе эксплуатации ЖКИ изменяется внешний вид информационных полей, что проявляется как ухудшение и исчезновение контраста между активными и пассивными зонами, увеличивается время реакции. Изменения внешнего вида и времени реакции является следствием электрохимических явлений на границе жидкокристаллического вещества (ЖКВ) - поверхность подложки. Скорость деградационных процессов в основном определяется постоянной составляющей напряжения возбуждения, предельно допустимое значение которого указывается в справочных данных. Наличие постоянной составляющей приводит к электролизу ЖКВ, в результате которого возникает газовыделение в объёме ЖКВ, образуются пузырьки газов, визуально воспринимаемые как чёрные точки. Электроды индикатора (проводящие плёнки) теряют свою прозрачность, и сегменты становятся видимыми в отсутствие напряжения возбуждения. В результате старения нарушается ориентация молекул ЖКВ и растет ток, потребляемый индикатором. Ток также может расти за счет проникновения влаги через слой герметика. Влага разрушает ЖКВ.

При эксплуатации ЖКИ в условиях низкой температуры отдельные компоненты ЖКВ могут кристаллизоваться. Чередование замораживания и размораживания ЖКВ может привести к образованию воздушных пузырьков, которые выглядят как черные точки.

Достоинства ЖКИ:

    малая потребляемая мощность (для ЖКИ на основе твист - эффекта удельная мощность потребления единицы мкВт/см 2);

    низкие рабочие напряжения (1,5...5 В);

    хорошая совместимость с КМОП - микросхемами;

    удобное конструктивное исполнение - плоская форма экрана и ограниченная толщина индикатора (до 0,6 мм);

    возможность эффективной индикации в условиях сильной внешней засветки;

    большая долговечность (около 10-12 лет непрерывной работы).

Основные недостатки:

    сравнительно низкое быстродействие;

    ограниченный угол обзора;

    необходимость внешнего освещения.

И так. Недавно пришли из Китая, через eBay заказанные и купленные, жидкокристаллические алфавитно-цифровые индикаторы на платформе контроллеров HD44780 или KS0066

Они давно уже пользуются большой популярностью у радиолюбителей. Марку сих девайсов определить не удалось. Смотрим фото. Кроме того, что они имеют две строки и в каждой по 16 символов – больше ничего. Такие ЖКИ имеют простую схему управления, например, для отображения информация на таком дисплее достаточно всего шести линий микроконтроллера, а так же они имеют относительно небольшую стоимость. Большинство таких индикаторов имеют подсветку, что позволяет использовать их в условиях плохой видимости или в полной темноте.

Индикаторы имеют однорядную или двух рядную разводку выводов при строго определённой последовательности их нумерации (рис. 2). Но из практического опыта использования ЖКИ-индикаторов необходимо констатировать, что выводы 1 и 2 (питание) зачастую могут иметь обратную полярность. Поэтому перед подключением обязательно убедитесь, как в вашем индикаторе разведено питание. Сделать это очень просто – вывод питания «минус» соединён с металлической рамкой, которая прижимает собственно сам дисплей к печатной плате. При неправильной полярности можно вывести индикатор из строя.

ЖКИ — индикаторы позволяют отображать символы латинского алфавита, цифры, при наличии соответствующего знакогенератора – кириллические (русские буквы), а так же специальные символы. Существуют знакогенераторы и с символами других алфавитов. Таблица знакогенератора «двуязычного» индикатора, или как её называют «Epson раскладка Russian» приведена в таблице ниже.

Для того что бы отобразить, допустим символ русской буквы Ш, необходимо указать позицию символа на индикаторе (например, для моего 2-х строчного 16-ти символьного индикатора первая строка имеет адресацию в интервале 80h – 8Fh, вторая строка С0h-CFh), а затем код отображаемого символа Ш – AСh (А – «координата» по горизонтали, С – по вертикали таблицы знакогенератора).
Все это хорошо, но в купленных мною индикаторах, мало того, что нет знакогенератора русских букв, но в нем нет значка градуса, часто необходимого при разработке термометров и т.п. Но в этих LCD предусмотрена запись в знакогенератор семи своих «самодельных» символов. Как это сделать я расскажу. Для начала, чтобы лишить себя удовольствия определения кода каждой точки в матрице, состоящей из 5×8 точек, скачайте программу скачали раз:, она свободно распространяется в сети. Смотрим скриншот этой программы.

Нажатием на ячейки матрицы, мы рисуем нужный символ, в данном случае это символьный значок градуса. Внизу нам программа сразу пишет коды выбранных точек матрицы. Теперь нам необходимо эти коды записать в контроллер индикатора. Для этого нам надо написать небольшую программку. Что бы не путать рубрики сайта эту программу я выложу в статье «Программа взаимодействия PIC16 и ЖК дисплея». Еще документацию на LCD можно прочитать здесь.

ИЖЦ71-5/7; ИЖЦ72-5/7

Цифровые пятиразрядные индикаторы ИЖЦ71 -5/7 и ИЖЦ72-5/7 с децимальной точкой в каждом разряде и встроенным микросхемным блоком управления предназначены для отображения цифровой информации в аппаратуре, устанавливаемой вне помещения (счетчики газа, жидкого топлива, электроэнергии, уличные термометры и т. п.).

Конструктивно индикатор представляет собой в общем виде две плоские тонкие стеклянные пластины, герметично склеенные по периметру с малым зазором, заполненным холодоустойчивым жидкокристаллическим веществом.

Работа индикатора основана на твист-эффекте в жидких кристаллах, для чего в конструкции предусмотрены два поляроида - две тонкие пленки, обладающие свойством поляризации проходящего через них света. Твист-эффект - это явление вращения плоскости поляризации поляризованного света тонким (около 20 мкм) слоем жидких кристаллов, исчезающее при действии на этот слой электрического поля. Плоскости поляризации света, обеспечиваемой каждым из поляроидов, взаимно перпендикулярны (их называют скрещенными).

Вообще говоря, система из скрещенных поляроидов света не пропускает, но если между ними разместить слой жидких кристаллов, в свою очередь, вращающий на 90 град, плоскость поляризации света, система становится прозрачной. Под действием электрического поля на какой-либо участок слоя жидких кристаллов они теряют способность вращать плоскость поляризации света и пропускание света прекращается. Зрительно это воспринимается как появление на светлом фоне темного, непрозрачного участка.

Электрическое поле должно быть знакопеременным, в противном случае в слое жидких кристаллов возникает электролитический процесс, приводящий к резкому сокращению срока их службы.

Индикатор ИЖЦ71-5/7 рассчитан для работы на отраженном свете, для чего на тыльную сторону прибора нанесено зеркальное покрытие. Индикатор ИЖЦ72-5/7 - полупрозрачный и работает на просвет, однако его можно перевести в отражательный режим, если установить позади прибора вплотную к нему зеркальную пластину.

Прибор снабжен двадцатью жесткими лужеными выводами квадратного сечения для подачи внешних сигналов. Внешний вид индикатора представлен на рис. 1. Масса прибора - не более 60 г.

Цоколевка индикатора представлена в табл.1.

Блок управления индикатора построен на основе бескорпусной сорокаканальной микросхемы КБ1835ИД1-4 структуры КМОП.

Как было указано, в индикаторе применено холодоустойчивое жидкокристаллическое вещество, допускающее нормальную работу прибора вплоть до температуры -30°С. При температуре ниже -30°С время смены информации на табло заметно увеличивается.

Необходимое быстродействие индикатора при температуре в пределах -30...-40°С обеспечивает специальный подогреватель, питающийся током. Это устройство выполнено на основе металлокерамики, имеет собственные выводы и поставляется отдельно от индикатора.

Для того чтобы предохранить поляроид индикатора, размещенный на его лицевой стороне, от повреждений при хранении и монтаже, табло на заводе-изготовителе прикрывают защитной пленкой. Перед началом эксплуатации прибора защитную пленку следует удалить.

Первые три буквы наименования индикатора означают Индикатор Жидкокристальный Цифровой, число 71 - порядковый номер разработки, цифра 5 - число разрядов, а 7 - число элементов изображения в разряде.

  • Потребляемый ток, мА, не более, при напряжении питания 5 В, частоте перезаписывания 100 Гц и частоте смены полярности возбуждения 100 Гц......0,2
  • Входное напряжение информационных сигналов в состоянии высокого уровня......4,5...5
  • низкого уровня......0...0,5
  • Входной ток цепей логических сигналов, мкА, не более......5
  • Время реакции, мс, не более......150
  • Время релаксации, мс, не более......150
  • Напряжение питания логических цепей, В......4,5...5,5
  • Рабочий температурный интервал, °С без подогревателя... -30...+65
  • с подогревателем.....-40...+65
  • Основные технические характеристики подогревателя
  • Сопротивление элемента, Ом......100...160
  • Мощность, потребляемая подогревателем при выходе на установившийся режим, Вт, не более......6
  • Мощность, потребляемая подогревателем в установившемся режиме, Вт, не более......3
  • Максимально допустимая температура элемента, °С.....+70

Внешнюю информацию индикатор принимает по восьмиразрядной линии DO - D7 по тактирующему сигналу CWR. После введения информации о всех элементах изображения во входной регистр блока управления (в течение пяти тактовых импульсов записи байта) на вход "Перезаписывание" поступает импульс WR, обеспечивающий перезаписывание информации из входного регистра в регистр хранения. Временные диаграммы, иллюстрирующие работу блока управления, представлены на рис. 2.

Из регистра хранения информация поступает в выходные формирователи, отвечающие за включенное или выключенное состояние элементов первого кадра в соответствии с принятой внешней информацией.

Новая информация второго кадра проходит тот же путь и поступает на табло. Таким образом, можно сказать, что блок управления имеет память на две страницы - одна хранит информацию о принятом кадре, а другая в это время записывает информацию о следующем кадре.

Формирование знакопеременного (без постоянной составляющей) возбуждающего индикатор напряжения происходит по сигналам COSL.

Функция "Инверсия выходной информации" предоставляет пользователю возможность подачи на индикатор информации как в прямом виде (когда высокому уровню на информационном входе соответствует включенный элемент табло), так и в инверсном (когда элемент табло включается низким входным уровнем). Прямое введение соответствует низкому уровню на входе Iп, а инверсное - высокому.

"Выход эстафетного сигнала" при использовании одиночного индикатора оставляют свободным. Если же необходимо наращивание числа разрядов индикации, рядом устанавливают второй такой же индикатор, а выв. 20 первого соединяют с внешним управляющим блоком.

Для индикаторов этого и других типов, способных работать в проходящем свете, выпускают специальные модули подсветки с лампами накаливания.

Жидкокристаллические индикаторы всех типов следует предохранять от длительного воздействия прямых солнечных лучей - это может привести к необратимой деструкции жидких кристаллов. По этой же причине следует оберегать индикаторы от статического электричества и перегревания при пайке.

ИЖЦ35-6/7

Шестиразрядные цифровые индикаторы ИЖЦ35-6/7 предназначены для отображения выходной информации в карманной электронной аппаратуре медицинского назначения с автономным питанием. Кроме шести цифровых разрядов, на табло размещены шесть мнемонических элементов. Работа индикатора основана на твист-эффекте. Прибор рассчитан на работу в отраженном свете; цвет изображения - черный, фон - светлосерый. Режим управления - статический.

Корпус - стеклянный, плоский (рис. 3). Выводы представляют собой прозрачные (на рисунке условно показаны черными) проводящие полосы - площадки, напыленные на стекло корпуса с лицевой стороны. Подключение индикатора к цепям устройств выполняют с помощью двух контактных резиновых гребенок, составленных из чередующихся проводящих и непроводящих участков.

Контактные площадки (их общее число - 52) размещены в два ряда, по одному на каждой длинной стороне корпуса. Если смотреть на табло прибора спереди (выступ-ключ на корпусе должен быть слева), то нижний ряд будет первым, верхний - вторым. Нумерация выводов в первом ряду (с 1 -го по 26-й) идет слева направо, а во втором (с 27-го по 52-й) - справа налево.

Цоколевка индикатора ИЖЦ35-6/7 (нумерация разрядов на табло увеличивается слева направо): выв. выв.

  • 1 - общий; выв.
  • 2 - элемент g разряда 1;
  • выв. 3 - е1;
  • выв. 4 - d1;
  • выв. 5 - с1;
  • выв. 6 - g2;
  • выв. 7 - е2;
  • выв. 8 - d2;
  • выв. 9 - с2;
  • выв. 10 - децимальная
  • точка разряда 2;
  • выв. 11 - g3;
  • выв. 12 - еЗ;
  • выв. 13 -d3
  • выв. 14 - сЗ;
  • выв. 15 -g4;
  • выв. 16 -е4
  • выв. 17 - d4;
  • выв. 18 - с4;
  • выв. 19 - g5
  • выв. 20 - е5;
  • выв. 21 - d5;
  • выв. 22 - с5
  • выв. 23 - g6;
  • выв. 24 - е6;
  • выв. 25 - d6
  • выв. 26 - с6; выв.27 - b6;
  • выв. 28 - а6
  • выв. 29 - f6;
  • выв. 30 - Д;
  • выв. 31 - Е
  • выв. 32 - b5;
  • выв. 33 - а5;
  • выв. 34 - f5
  • выв. 35 - Г;
  • выв. 36 - 3;
  • выв. 37 - b4
  • выв. 38 - а4;
  • выв. 39 - f4;
  • выв. 40 - bЗ
  • выв. 41 - В;
  • выв. 42 - аЗ;
  • выв. 43 - f3
  • выв. 44 - Ж;
  • выв. 45 - b2;
  • выв. 46 - Б
  • выв. 47 - а2;
  • выв. 48 - f2;
  • выв. 49 - b1
  • выв. 50 - А;
  • выв. 51 - а1;
  • выв. 52 - f 1.

Масса индикатора - не более 2 г.

Основные технические характеристики индикатора при Токр.ср = 25°С

  • Собственный яркостный контраст, %, не менее......83,3
  • Потребляемый ток, мкА, не более......2,5
  • Номинальное напряжение управления, В......2,8
  • Номинальная рабочая частота управляющего напряжения, Гц. .32
  • Время релаксации, мс,не более......300
  • Угол обзора, град......45
  • Срок сохраняемости, лет, не менее......6

Предельные эксплуатационные значения

  • Напряжение управления, В....2,6...3,1
  • Рабочая частота управляющего напряжения, Гц......30...64
  • Рабочий температурный интервал,°С......-1...+55

Основной параметр всех жидкокристаллических индикаторов, отражающий качество их работы, - контраст знака по отношению к фону. Контраст К определяют как отношение значений интенсивности света, выходящего из индикатора, в исходном и возбужденном состояниях. Этот параметр измеряют с помощью специальной оптической установки, основой которой служит микроскоп с встроенным фотоэлектронным умножителем тока на выходе.

Контраст вычисляют в процентах по формуле: К = (IФ - I3) 100/ Iф, где Iф - ток фона - выходной фототок электронного умножителя при выключенном индикаторе; l3 - ток знака - выходной фототок умножителя при возбужденном номинальным управляющим напряжением индикаторе (если изображение знака темнее фона табло).

Контраст выражают иногда в относительных единицах; в этих случаях из указанной формулы выпадает сомножитель 100.

ИЖЦ4-12/7

Двенадцатираэрядные цифровые твистэффектные индикаторы ИЖЦ4-12/7 работают на отражение света и предназначены для отображения информации в многофункциональных телефонных аппаратах и таксофонах. Цвет изображения - черный, фон - светлосерый. Режим работы индикатора - мультиплексный.

Кроме цифровых разрядов, на табло прибора размещены в строку семь слов, управляемых каждое так же, как и отдельный элемент разряда.

Прибор способен нормально работать при низких значениях температуры окружающей среды - до -30°С. Это достигнуто применением морозостойкого жидкокристаллического материала.

Корпус индикатора - стеклянный плоский (рис. 4); выводы - жесткие, луженые. Масса - не более 80 г.

Если расположить прибор лицевой стороной к себе и выводами вниз, то крайним слева окажется выв. 1, а крайним справа - выв. 39. Нумерация разрядов на табло увеличивается слева направо.

Цоколевка индикатора представлена в табл. 2 (цифровые разряды) и табл. 3 (слова).

Основные технические характеристики при Токр.ср = 25°С

  • Собственный яркостный контраст, отн. ед., не менее......0,9
  • Потребляемый ток, мкА, не более......50
  • Номинальное напряжение управления, В......3
  • Номинальная рабочая частота управляющего напряжения, Гц......64
  • Время реакции, мс, не более......200
  • Время релаксации, мс, не более......200
  • Минимальная наработка на отказ, ч......50 000
  • Минимальный срок сохраняемости, лет......4
  • Предельные эксплуатационные значения
  • Напряжение управления, В... .2,5...3,5
  • Рабочая частота управляющего напряжения, Гц......44...84
  • Рабочий температурный интервал, °С......-30...+55

Как было указано, индикатор рассчитан на мультиплексный режим управления с тактовым соотношением 1:3. Это означает, что после каждого временного такта возбужденного состояния того или иного элемента изображения следуют три такта отсутствия управляющего напряжения. В результате инерционности жидкокристаллического вещества яркостный контраст за это время не успевает заметно измениться. Далее процесс повторяется с тем же тактовым соотношением.

ИЖВ74-160Х16; ИЖВ76-160Х16

Буквенно-цифровые матричные индикаторы ИЖВ74-160х 16 и ИЖВ76-160Х16 со встроенным блоком управления предназначены для отображения буквенной и цифровой информации в портативной измерительной и вычислительной аппаратуре. Индикаторы ИЖВ74-160Х16 работают на отражение света, а ИЖВ76-160Х16 - на просвет. В основе работы индикаторов лежит твист-эффект. Включенные элементы изображения выглядят черными на светло-сером фоне.

На табло прибора размещены две строки длиной 149,1 мм, состоящие из 32 знакомест в каждой. Знакоместо имеет матричную структуру из 7X5 элементов прямоугольной формы. Размеры элемента 0,8x0,6 мм, размеры знакоместа 6,2x3,4 мм. Под каждой из строк расположена так называемая курсорная строка, состоящая из одинарного ряда элементов тех же размеров. Эти строки позволяют формировать перемещающиеся метки-указатели того или иного знака в строке.

Корпус индикаторов - стеклянный плоский (рис. 5,а). Выводы для приема сигналов управления выполнены в виде печатных токопроводящих дорожек из фольги на двух тонких (толщиной около 0,1 мм) гибких лентах из полиимида. На одной ленте - 12 выводов (эта группа обозначена Х1), на другой - 21 (Х2). Шаг выводов - 1,25 мм; ширина выводов - 0,6 мм.

Выводы сформированы на крайнем обрезе полиимидных лент справа от корпуса (если смотреть на лицевую сторону индикатора). Форма лент такова, что снизу оказывается лента с выводами группы Х2, причем их проводящая сторона обращена назад, а сверху - лента с выводами группы Х1, обращенными вперед.

На рис. 5,6 показано крупно расположение элементов знакомест индикатора. Размеры индикационного поля - 149,1X16,1 мм. Масса индикатора - 100 г.

В наименовании прибора буква В обозначает в принятой системе буквенно-цифровую группу индикаторов, числа 74 или 76 - порядковые номера разработки, а 160 и 16 указывают на число столбцов и строк соответственно, образующих информационное поле индикатора. Каждый элемент изображения образуется на пересечении своих строки и столбца.

Цоколевка индикатора представлена в табл. 4.

Основные технические характеристики при Токр.ср = 25 °С

  • Собственный яркостный контраст, отн. ед., не менее......0,75
  • Входное напряжение низкого логического уровня, В......0...0.5
  • Входное напряжение высокого логического уровня, В......4,5...5,5
  • Время реакции, мс, не более......200
  • Время релаксации, мс, не более......200

Предельные эксплуатационные значения

  • Напряжение питания логического блока индикатора, В......4,5...5,5
  • Тактовая частота управляющего логического блока, кГц......50...400
  • Рабочий температурный интервал окружающей среды, °С......-1...+55
  • Предельные значения температуры,°С......-45; +60

Встроенный логический блок управления строками и столбцами индикатора выполнен на бескорпусных микросхемах КБ1835ИД1-4 структуры КМОП. Каждая микросхема способна обслуживать 40 каналов (строк или столбцов). Временные диаграммы, иллюстрирующие работу блока, показаны на рис. 6.

Введение информации во входной регистр происходит параллельно-последовательно по входной восьмиразрядной линии D0 - D7 и тактируется сигналом CWR. За 20 тактов записывается входная информация о всех 160 элементах одной строки.

По фронту импульса WR входная информация параллельно переписывается из входного регистра в выходной. Этот же сигнал, поданный на узел управления строками, начинает сканировать следующую строку с ее начала. Процесс записи протекает слева направо вдоль по строке и сверху вниз по столбцам. Начальный бит D0 в каждом байте отображается слева.

Кадровую синхронизацию (установку начала развертки в левый верхний угол индикационного поля перед передачей кадра) обеспечивают импульсы SR, подаваемые на индикатор с внешнего блока управления. Формированием знакопеременного напряжения возбуждения индикатора управляет сигнал COSL

Кроме этого, на узел управления столбцами необходимо подать сигнал In. Если на входе In низкий уровень, то высокому уровню на входах D0 - D7 будут соответствовать включаемые элементы изображения, а низкому - не-включаемые. При высоком уровне на входе In, наоборот, высокому уровню на входах D0 - D7 соответствует невключение элементов, а низкому - включение. Для возбуждения элементов отображения используют шестиуровневый оптимизированный режим. Выходные цепи узла управления строками питаются по двум парам входов группы Х1 - U1, U2, U5, U6, а для узла управления столбцами - U1, U3, U4, U6 группы X2. Напряжение питания - от Uпит до -10 В. Эти сигналы формирует либо внешний блок управления, либо набор внешних резистивных делителей.

Принцип расчета значений U1 - U6 напряжения питания подробнее изложен ниже, при описании индикаторов ИЖГ96-240Х80 и ИЖГ97-240Х80.

ИЖГ96-240Х80; ИЖГ97-240Х80

Графические индикаторы ИЖГ96-240Х80 и ИЖГ97-240Х80 со встроенным блоком управления предназначены для отображения буквенной, цифровой и графической информации в портативной измерительной и вычислительной аппаратуре.

Индикатор ИЖГ96-240Х80 отражательный, а ИЖГ97-240Х80 - просветный. В основу работы приборов положен супертвист-эффект. Этим термином, бытующим в научно-технической литературе последние несколько лет, обозначают тот же твист-эффект, но реализованный в конструкциях более высоких технологий с более совершенными материалами. Супертвист-эффект обеспечивает более высокий контраст изображения и большее быстродействие.

Цвет включенных элементов на табло рассматриваемых приборов - темно-синий на светло-желто-зеленом фоне. Размеры индикационного табло - 131,9x43,9 мм.

Корпус - плоский стеклянный (рис. 7,а). Выводы выполнены в виде печатных фольговых дорожек на двух гибких лентах из полиимида. На одной ленте 12 выводов (группа Х1), на другой - 21 (Х2). Шаг выводов 1,25 мм, ширина выводов 0,6 мм.

Ленты выведены на правую сторону индикатора (если смотреть на лицевую сторону его табло), причем снизу находится лента с выводами группы Х2 проводящей стороной назад, а сверху - лента с группой Х1 проводящей стороной вперед.

На рис. 7,б показаны взаимное расположение и размеры элементов изображения на табло индикатора. Элементы изображения - точки квадратной формы - размещены на поле равномерно. Размеры одного элемента - 0,45x0,45 мм.

Масса индикатора - не более 80 г.

Буква Г в наименовании индикатора указывает на способ отображения информации - графический, числа 96 и 97 - порядковые номера разработки, а 240 и 80 - числа столбцов и строк соответственно, образующих информационное поле прибора.

По цоколевке индикаторы ИЖГ96-240Х80 и ИЖГ97-240х80 аналогичны ИЖВ74-160х16 и ИЖВ76-160Х16 (см. табл. 4).

Основные технические характеристики при Токр.ср=25°С

  • Собственный яркостный контраст, отн. ед., не менее......0,8
  • Ток, потребляемый логическим блоком управления, мА, не более......2
  • Ток, потребляемый выходными цепями блока управления, мА, не более......2
  • Входной ток информационных и логических входов, мкА, не более......20
  • Номинальное напряжение питания управляющего логического блока, В......5
  • Номинальная тактовая частота логической части управляющего блока, кГц......200
  • Время реакции, мс, не более......500
  • Время релаксации, мс, не более......500
  • Минимальная наработка на отказ, ч......3000
  • Минимальный срок сохраняемости, лет......4

Предельные эксплуатационные значения

  • Напряжение питания управляющего логического блока, В......4,5...5,5
  • Входное напряжение низкого логического уровня, В......0..0,5
  • Входное напряжение высокого логического уровня, В......4...5,5
  • Тактовая частота, кГц......120.. .400
  • Минимальная кадровая частота, Гц......50
  • Частота смены полярности напряжения возбуждения, Гц......100...500
  • Рабочий температурный интервал, °С......-1...+55
  • Предельные значения температуры окружающей среды, °С.......-45; +60

Встроенный логический блок управления строками и столбцами выполнен на бескорпусных микросхемах КБ1835ИД1-4. Общий принцип управления строками и столбцами таков же, как и у ИЖВ74-160Х16. Выходные цепи узле управления строками питаются также но пределы напряжения питания несколько шире - от Uпит до -12 В.

Диаграммы сигналов, формируемых узлами управления по строкам и столбцам и прикладываемых к выводам индикатора, изображены на рис. 8.

Значения U1-U6 напряжения питания узлов управления строками и столбцами (формируемые внешним блоком) должны удовлетворять следующим соотношениям: U1≤Uпит; U2=U1-U0; U3=U1-2U0; U4=U1-(a-1)U0; U5=U1-U0; U6≥-12 В, где Uпит=5±0,5 В; a=√n-9 - коэффициент оптимизации; п=80 - степень мультиплексирования (или, иначе, скважность сканирования строк); U0 - начальное напряжение, определяемое индивидуальными характеристиками индикатора и лежащее в пределах 1 ...2 В; типовое значение - 1,3 В.

Равенство разностей U1-U2=U2-U3= U4-U5=U5-U6=U0 должно быть обеспечено с точностью не менее ±1%. Точность задания коэффициента оптимизации должна находиться в пределах ±5%.

Все, что касается выбора значений напряжения питания выходных цепей узлов управления строками и столбцами, в равной мере относится и к индикаторам ИЖВ74-1 60х 16 и ИЖВ76-160х 16.

На рис. 9 показана зависимость собственного яркостного контраста от напряжения U1-U6. На рис. 10 - 12 изображены зависимости тока, потребляемого индикатором, от различных параметров - от напряжения U1-U6, от частоты fcwr и fcosi. соответственно.

Читайте и пишите полезные

Жидкокристаллические индикаторы (ЖКИ) основаны на использовании так называемых жидких кристаллов (ЖК), пред­ставляющих собой некоторые органиче­ские жидкости с упорядоченным рас­положением молекул, характерным для кристаллов. Жидкие кристаллы прозрачны для световых лучей, но под действием электрического поля напряженностью 2 - 5 кВ/см структура их нарушается, молекулы располагаются беспорядочно и жидкость становится непрозрачной.

Эти индикаторы могут иметь различ­ные конструкции и работать либо в проходящем свете, созданном каким-либо специальным источником, либо в свете любого источника (искусствен­ного или естественного), отражающем­ся в индикаторе.

На рис. 40 представлен ЖКИ, работающий на отражение. Индикаторы такого типа применяются в наручных электронных часах, микрокалькуляторах и других устройствах. Между двумя стеклянными пластинками 1 и 3, склеен­ными с помощью полимерной смолы 2, находится слой жидкого кристалла 4 толщиной 10 - 20 мкм. Пластинка 3 покрыта сплошным проводящим слоем (электрод 5) с зеркальной поверхностью. На пластинку 1 нанесены прозрачные слои - электроды А, Б, В, от которых сделаны выводы, не показанные на рисун­ке. Эти электроды имеют форму цифр, или букв, или сегментов для синтези­рования различных знаков.

Рисунок 40 – Жидкокристаллический индикатор, работающий на отражение

В случае если на зна­ковые электроды напряжение не подано, то ЖК прозрачен, световые лучи внешнего естественного освещения про­ходят через него, отражаются от элект­рода 5, выходят обратно и никаких знаков не видно. Но если на какой-то электрод, к примеру А, подано напряже­ние, то ЖК под этим электродом становится непрозрачным, лучи света не проходят через эту часть жидкости (6), и тогда на светлом фоне виден темный знак.

Жидкокристаллические индикаторы весьма экономичны и долговечны. Для управления ЖКИ применяются довольно сложные устройства, обычно на базе интег­ральных микросхем. Находят широкое применение в качестве дисплеев переносных и стационарных электронных устройств – средств связи, измерительной аппаратуры, компьютерной технике. Вместе с тем, на сегодняшний день являются основным типом мониторов и телœевизионных приемников.

Эффективное и надежное использование многих систем промыш­ленной электроники невозможно без участия человека-оператора в управлении, который должен получать необходимые сведения о рабо­те системы и контролируемых параметрах. Этой цели служат устрой­ства, предназначенные для преобразования различных данных в види­мое изображение и называемые устройствами отображения информации.

Устройства отображения информации могут решать простейшие, но весьма важные задачи контроля состояния системы: ʼʼРаботаетʼʼ, ʼʼНе работаетʼʼ, ʼʼВключеноʼʼ, ʼʼВыключеноʼʼ, ʼʼСтопʼʼ и т. д. В более слож­ных случаях на них возлагается функция отображения цифровой, текстовой и графической информа­ции, характеризующей технологический процесс, работу производ­ственного объекта͵ и целой системы.