Ликвидация бизнеса. Приказы. Оборудование для бизнеса. Бухгалтерия и кадры
Поиск по сайту

VII.2.3. Производство кессонных работ. Кессонные фундаменты Кессонные работы

КЕССОН (от французского caisson - ящик),

1) ограждающая конструкция для образования под водой или в водонасыщенном грунте рабочей камеры, свободной от воды; имеет вид опрокинутого вверх днищем ящика. Поступление воды в рабочую камеру предотвращается нагнетанием в неё сжатого воздуха. Кессон обычно сооружается на поверхности и погружается в грунт под действием собственного веса и веса надкессонного строения по мере выемки грунта. Применяется в сильно обводнённых грунтах, содержащих прослойки скальных пород или твёрдые включения (валуны, погребённую древесину и др.) для устройства фундаментов глубокого заложения. Для подводных работ, не связанных с необходимостью заглубления в грунт (главным образом ремонтные и восстановительные работы в гидротехническом строительстве), на дно опускают съёмный кессон или воздушный колокол.

При кессонных работах в кессон компрессорной станцией непрерывно подаётся сжатый воздух. В зависимости от величины воздушного давления для предупреждения заболевания рабочих кессонной болезнью (смотри Декомпрессионная болезнь) в рабочей камере регламентируется продолжительность рабочего дня, время шлюзования, то есть перехода от атмосферного давления к рабочему, время обратного процесса и т. п. Максимальное давление воздуха в рабочей зоне, при котором можно вести строительные работы, в соответствии с действующими правилами безопасности составляет 0,39 МПа.

Кессон состоит из двух основных частей: рабочей (кессонной) камеры (высота не менее 2,2 м) и надкессонного строения. Стены кессонной камеры (консоли) с внутренней стороны заканчиваются ножом, врезающимся в грунт в процессе опускания кессона. В верхнем перекрытии (потолке) имеются отверстия, над которыми монтируются шахтные трубы и шлюзовой аппарат, обеспечивающий доставку людей и материалов из зоны сжатого воздуха в зону атмосферного давления и обратно. Надкессонное строение в зависимости от назначения кессона выполняется либо как колодец с железобетонными стенками (под заглублённые помещения опускных сооружений), либо в виде сплошного массива из монолитного бетона или железобетона (для фундаментов глубокого заложения). После достижения ножом кессона проектной отметки рабочая камера полностью или частично заполняется бетоном или песком.

Кессонные камеры применяют также при проходке тоннелей (так называемые горизонтальные кессоны) в сложных гидрогеологических условиях для отжатия воды из зоны проходки и осушения забоя при ведении проходческих работ в неустойчивых плывунных грунтах или грунтах с большим водопритоком, а также в целях создания дополнительного давления на забой (если такое давление может заменить временную крепь). Кессонную проходку тоннелей ведут, как правило, щитовым способом.

Прообраз кессона - деревянный водолазный колокол; в 1690 году он был усовершенствован английским астрономом Э. Галлеем, который присоединил к нему шланги для подачи воздуха. В 1841 французский учёный Трижо предложил кессонный метод возведения фундаментов. В 19 - начале 20 века кессоны широко применялись главным образом для устройства фундаментов мостов (впервые - инженером В. Ройблингом при строительстве Бруклинского моста). Ныне кессоны применяются ограниченно.

2) Устройство для частичного осушения подводной части судна с целью ремонта или осмотра. Кромки кессона имеют форму обводов осушаемого участка. Кессон подводят открытой стороной к повреждённой части корпуса и откачивают из него воду, создавая рабочее пространство для выполнения ремонтных работ. Кессон прижимается к судну гидростатическим давлением.

3) Охлаждаемая водой стальная коробка, используемая в качестве элемента стенок шахтных металлургических печей, газовых каналов головок мартеновских печей и др.

4) Тонкостенная конструкция балочного типа с замкнутым одно или многосвязным контуром поперечного сечения. Обшивка кессона воспринимает нормальное и касательное напряжения. Для сохранения формы поперечного сечения, ограничения его депланации, а также для распределения усилий между контурами кессон имеет диафрагмы или нервюры. Наиболее распространённый тип авиационных конструкций (крылья и другие элементы).

Архитектура, проектирование и строительство

При залегании прочных грунтов на значительной глубине когда устройство фундаментов в открытых котлованах становится трудновыполнимым и экономически невыгодным а применение свай не обеспечивает необходимой несущей способности прибегают к устройству фундаментов глубокого заложения. Необходимость устройства фундаментов глубокого заложения может быть вызвана и особенностями самого сооружения например когда оно должно быть опущено на большую глубину заглубленные и подземные сооружения. Одним из видов фундаментов глубокого заложения наряду с...

Задание 25. Кессоны. Условия применения, конструктивная схема, последовательность производства работ.

При залегании прочных грунтов на значительной глубине, когда устройство фундаментов в открытых котлованах становится трудновыполнимым и экономически невыгодным, а применение свай не обеспечивает необходимой несущей способности, прибегают к устройству фундаментов глубокого заложения. Необходимость устройства фундаментов глубокого заложения может быть вызвана и особенностями самого сооружения, например, когда оно должно быть опущено на большую глубину (заглубленные и подземные сооружения). К таким сооружениям относятся подземные гаражи и склады, ёмкости очистных, водопроводных и канализационных сооружений, здания насосных станций и многие другие.

Одним из видов фундаментов глубокого заложения наряду с опускными колодцами, тонкостенными оболочками, буровыми опорами и фундаментами, возводимыми методом "стена в грунте", являются кессоны.

Кессонный метод устройства фундаментов глубокого заложения был предложен для строительства в сильно обводнённых грунтах, содержащих прослойки скальных пород или твёрдые включения (валуны, погребённую древесину и т.д.). В этих условиях устройство фундамента глубокого заложения по схеме "насухо" требует больших затрат на водоотлив, а разработка грунта под водой невозможна из-за наличия в грунте твёрдых включений.

Кессон схематически представляет собой опрокинутый вверх днищем ящик, образующий рабочую камеру, в которую под давлением нагнетается сжатый воздух, уравновешивающий давление грунтовой воды на данной глубине, что не позволяет ей проникать в рабочую камеру, благодаря чему разработка грунта ведётся насухо без водоотлива.

Кессон состоит из двух основных частей: кессонной камеры и надкессонного строения (рис.1).

Кессонная камера выполняется из железобетона и состоит из потолка и стен, называемых консолями. Консоли камеры с внутренней стороны имеют наклон и заканчиваются ножом. Толщина консолей в месте примыкания к потолку составляет 1,5...2 м. При бетонировании кессонной камеры в её потолке оставляют отверстие для установки шахтной трубы, труб сжатого воздуха и воды, а также подводки электроэнергии.

Надкессонное строение в зависимости от назначения кессона выполняется либо как колодец с железобетонными стенками (под заглубленное помещение), либо в виде сплошного массива из монолитного бетона или железобетона (для фундаментов глубокого заложения).

Главными элементами оборудования для опускания кессонов являются шлюзовые аппараты, шахтные трубы и компрессорная станция.

Шлюзовой аппарат, соединённый с кессонной камерой шахтными трубами, предназначен для шлюзования людей и грузов при их спуске в кессонную камеру и при подъёме из неё.

Последовательность производства работ при строительстве кессонов следующая.

Сначала на спланированной поверхности грунта возводится кессонная камера, на которой монтируются шлюзовой аппарат и шахтные трубы. Одновременно вблизи кессона сооружается компрессорная станция и монтируется оборудование для подачи в кессон сжатого воздуха.

После того как бетон кессонной камеры приобретёт проектную прочность, её снимают с подкладок и начинают погружение. Сжатый воздух начинают подавать в кессонную камеру, как только её нижняя часть достигнет уровня подземных вод. Давление воздуха, обеспечивающее отжим воды из камеры кессона, определяется из условия:

p в ≥Н w γ w

где p в - избыточное (сверх атмосферного) давление воздуха;

Н w -гидростатический напор на уровне банкетки ножа;

γ w - удельный вес воды.

По мере погружения кессона в грунт наращивают шахтные трубы, если это необходимо, и возводят надкессонную часть сооружения.

После опускания кессона на проектную отметку всё специальное оборудование демонтируется, а рабочая камера заполняется бетоном.


А также другие работы, которые могут Вас заинтересовать

58265. Особенности учета в автотранспортных организациях 60.5 KB
Учет автомобильных шин и запасных частей Автомобильные шины поступающие вместе с новым автомобилем либо прицепом на колесах и один запасной комплект входят в стоимость автотранспортного средства и учитываются на счете 01 Основные средства.
58266. Эпоха Просвещения 55.5 KB
Шарль Луи Монтескье выдающийся французский мыслитель энциклопедического склада. Как философ социолог и писатель Монтескье оставил глубокий след в истории прогрессивной мысли. Велика роль Монтескье в деле идейной подготовки Великой французской буржуазной революции.
58267. Як людина отримує інформацію 38 KB
Мета: Ознайомити учнів з тим, за допомогою яких органів людина сприймає інформацію. Дати уявлення про колір фону в Paint. Розвивати увагу, пам’ять, логічне мислення. Виховувати любов до природи.
58268. Организация бухгалтерского дела и архива 63.5 KB
Для обобщения различных видов учетных работ в единое целое обеспечения равномерности их выполнения в течение отчетного периода составляется специальный график в котором для подразделений бухгалтерии и отдельных ее работников указывается время представления первичных документов...
58269. Производство продукции из вторичного древесного сырья на лесопромышленном складе 82.5 KB
Подготовка древесного сырья является важнейшей частью технологического процесса обеспечивающей возможность использования низкокачественной древесины для получения технологической щепы с допускаемой стандартом засоренностью корой и гнилью.
58270. Начало Французской революции. Свержение монархии. Якобинская диктатура 147.5 KB
И сразу начались затяжные споры по различным вопросам: о способах проверки полномочий депутатов о совместных и раздельных заседаниях о задачах Генеральных штатов о правах третьего сословия завтрашнем дне страны о будущем Франции.
58271. ЕКОНОМІКА ВЕЛИКОБРИТАНІЇ 40 KB
У самому справі Великобританії можуть вижити тільки виробництва і торгівлі. За винятком вугілля низькосортна залізна руда природний газ і нафта у Великобританії є кілька природних ресурсів. Вугілля була замінована у Великобританії більше 300 років.
58272. Контроль витрат і стимулювання економії ресурсів. Система обліку витрат 199.5 KB
Контроль витрат є важливою складовою системи управління витратами, без якої неможлива повноцінна реалізація інших її функцій. До основних завдань контролю витрат відносять: моніторинг - систематичне відстежування динаміки витрат і факторів, які на неї впливають...
Кессоны и кессонные работы - Прежде это название (франц. Caisson) применялось к открытым сверху, плавучим ящикам, в которых возводится каменная кладка, так что ящик постепенно погружается и наконец садится на дно, причем кладку можно продолжать, как на суше (см. Понтонный ящик). В настоящее время строительная практика под словом К. понимает только сверху закрытый ящик, из которого, после погружения его на дно, вода вытесняется сгущенным воздухом, так что рабочие могут в нем свободно двигаться. Подкапывая дно под краями ящика, они постепенно его углубляют до достижения твердого слоя, который может служить надежной подошвой для сооружения. Такой способ устройства оснований называется вообще пневматическим. Способ этот испытан был в первый раз в 1839 г. французским инженером Триже (Triger) при заложении каменноугольной шахты в водоносном слое в Шалонских копях близ реки Луары и затем применен был в 1850 г. в Англии инженером Юзом (Hughes) для устройства оснований Рочестерского моста через реку Мидвей. Быки этого моста выведены были на чугунных колоннах, 2,15 м в диаметре, наполненных бетоном. Для возможности производства работ в колонне, внутреннее пространство ее с помощью воздуходувных машин наполнено было сгущенным воздухом, который вытеснил из нее воду через нижнее, открытое отверстие. Над колонной установлены были две камеры - воздушные шлюзы, которые сообщались посредством плотно закрываемых дверец как с наружным воздухом, так и с рабочим пространством в колонне. Рабочие входили в шлюзную камеру через наружную дверь и, закрыв ее за собой, при помощи крана сообщали камеру со сгущенным воздухом в рабочем пространстве колонны. После полного уравнения давлений можно было открыть дверь, ведущую из шлюзной камеры внутрь колоны, и спуститься вниз. Подобным же образом, только в обратном порядке, совершался выпуск рабочих, причем раньше, чем открыть дверь, ведущую из шлюза наружу, выпускали из него с помощью крана сжатый воздух. Через эти же шлюзы выносился извлекаемый со дна грунт и вводились материалы для заполнения колонн бетоном. Этим способом подошва оснований моста опущена была на глубину 18 м. Когда оказалось, что сжатый воздух дает возможность работать с успехом и беспрерывно как на больших, так и на малых глубинах, независимо от разных препятствий, как наступление паводков и проч., способ этот начал входить во всеобщее употребление при сооружении мостов. Наступившая после этого эпоха постройки больших железнодорожных линий вызвала быстрое усовершенствование пневматического способа устройства оснований. На фиг. 1 представлен разрез быка моста С.-Петербурго-Варшавской дороги через Неман, у города Ковно, построенного инженером Сезанном (C?zanne 1859 г.), по образцу построенного им же раньше Чегединского моста через реку Тейссу.

Ограждающая конструкция для образования под водой или в водонасыщенном грунте рабочей камеры, свободной от воды, обычно вытесняемой сжатым воздухом. Кессоны сооружаются на поверхности и погружаются в грунт под действием собственного веса и веса надкессонного строения по мере разработки грунта. Кессон может опускаться с суши, с искусственно отсыпанных или намытых островков или с поверхности воды (наплавные кессоны).

Основная рабочая операция при опускании кессона - разработка и выдача на поверхность грунта. Скальные грунты и твердые глины разрабатываются взрывным способом или пневматич. инструментами. При проходке песчаных и поддающихся размыву глинистых грунтов работы ведутся гидромеханизационными установками: грунты размываются гидромониторами и удаляются из кессонов гидроэлеваторами. Гидромеханизация кессонных работ резко сокращает количество работающих в кессоне, уменьшает вредность произ-ва и расход сжатого воздуха, ускоряет и удешевляет стр-во.

В процессе выполнения кессонных работ компрессорная станция непрерывно подает в кессон сжатый воздух, поддерживая в нем необходимое воздушное давление. При ручной разработке грунтов, когда требуется полное их осушение, давление воздуха в камере поддерживается на 0,1-0,3 ат выше тидростатич. давления на отметке забоя. При применении гидромеханизации для улучшения условий размыва грунтов работы ведутся с пониженным воздушным давлением.

В зависимости от величины воздушного давления в камере, согласно правилам безопасности, должны проводиться мероприятия, предупреждающие возможность заболевания рабочих кессонной болезнью, регламентируются продолжительность рабочего дня, время вышлюзовывания и т. д. Допустимый предел воздушного давления установлен 3,9 ат. Этим определена максимальная глубина опускания - ок. 40 м.

В современном строительстве применяются железобетонные кессоны. Боковые стенки их (консоли) внизу заканчиваются ножом, врезающимся в грунт в процессе опускания. В верхнем перекрытии (потолке) кессона имеются шахтные отверстия, над которыми монтируются шахтные трубы и шлюзовой аппарат. Последний обеспечивает возможность транспорта людей и материалов из зоны сжатого воздуха в зону атмосферного давления и обратно. В потолке кессона предусматриваются также отверстия для воздуховодов, водоводов, электропроводов и др. После достижения ножом проектной отметки рабочие камеры заполняются полностью или частично бетоном, песком; иногда их оставляют незаполненными.

Кессоны раньше широко использовались для устройства фундаментов мостовых опор. В современном мостостроении кессоны заменены новыми видами глубоких опор и свайными фундаментами. Вместе с тем в последние два десятилетия кессоны наряду с опускными колодцами все шире используются в пром. стр-ве для погружения в грунт «опускных сооружений» - относительно небольших в плане, но сильно заглубленных подземных сооружений, основные части к-рых предварительно возводятся на поверхности. Этот способ применяется при стр-ве насосных станций, водозаборов, при устройстве глубоких приямков в пром. предприятиях и т. д. Кессонный способ может быть использован в любых грунтовых и гидрогеологич. условиях и более надежен для погружения фундамента или опускного сооружения до проектной отметки, чем способ опускных колодцев. Вместе с тем, кессонный способ имеет существенные недостатки, обусловленные ведением работ под сжатым воздухом: вредность произ-ва, сравнительно высокая стоимость, ограниченная глубина погружения.

Для подводных работ, не связанных с необходимостью заглубления в грунт (ремонтные и восстановительные работы в гидротехнич. стр-ве, подготовка скального основания, выходящего на поверхность дна акватории, и т. п.), иногда применяются съемные кессоны, представляющие собой конструкцию в виде бездонного ящика (воздушного колокола), погружаемого в воду наплаву или с подмостей.

Лит.: Озеров Н.В., Кессонные фундаменты, М., 1940; Зингоренко Г. И. и Силин Н. А., Гидромеханизация кессонных работ, М., 1949; Хализев Е. П., Выбор оптимального режима работы гидромеханизационных установок в кессонах, М., 1957; Правила безопасности при производстве работ под сжатым воздухом (Кессонные работы), 2 изд., М., 1960.

Кессоны и кессонные работы

Прежде это название (франц. Caisson) применялось к открытым сверху, плавучим ящикам, в которых возводится каменная кладка, так что ящик постепенно погружается и наконец садится на дно, причем кладку можно продолжать, как на суше (см. Понтонный ящик). В настоящее время строительная практика под словом К. понимает только сверху закрытый ящик, из которого, после погружения его на дно, вода вытесняется сгущенным воздухом, так что рабочие могут в нем свободно двигаться. Подкапывая дно под краями ящика, они постепенно его углубляют до достижения твердого слоя, который может служить надежной подошвой для сооружения. Такой способ устройства оснований называется вообще пневматическим. Способ этот испытан был в первый раз в 1839 г. французским инженером Триже (Triger) при заложении каменноугольной шахты в водоносном слое в Шалонских копях близ реки Луары и затем применен был в 1850 г. в Англии инженером Юзом (Hughes) для устройства оснований Рочестерского моста через реку Мидвей. Быки этого моста выведены были на чугунных колоннах, 2,15 м в диаметре, наполненных бетоном. Для возможности производства работ в колонне, внутреннее пространство ее с помощью воздуходувных машин наполнено было сгущенным воздухом, который вытеснил из нее воду через нижнее, открытое отверстие. Над колонной установлены были две камеры - воздушные шлюзы , которые сообщались посредством плотно закрываемых дверец как с наружным воздухом, так и с рабочим пространством в колонне. Рабочие входили в шлюзную камеру через наружную дверь и, закрыв ее за собой, при помощи крана сообщали камеру со сгущенным воздухом в рабочем пространстве колонны. После полного уравнения давлений можно было открыть дверь, ведущую из шлюзной камеры внутрь колоны, и спуститься вниз. Подобным же образом, только в обратном порядке, совершался выпуск рабочих, причем раньше, чем открыть дверь, ведущую из шлюза наружу, выпускали из него с помощью крана сжатый воздух. Через эти же шлюзы выносился извлекаемый со дна грунт и вводились материалы для заполнения колонн бетоном. Этим способом подошва оснований моста опущена была на глубину 18 м. Когда оказалось, что сжатый воздух дает возможность работать с успехом и беспрерывно как на больших, так и на малых глубинах, независимо от разных препятствий, как наступление паводков и проч., способ этот начал входить во всеобщее употребление при сооружении мостов. Наступившая после этого эпоха постройки больших железнодорожных линий вызвала быстрое усовершенствование пневматического способа устройства оснований. На фиг. 1 представлен разрез быка моста С.-Петербурго-Варшавской дороги через Неман, у города Ковно, построенного инженером Сезанном (Cézanne 1859 г.), по образцу построенного им же раньше Чегединского моста через реку Тейссу.

Бык состоит из пары чугунных колонн (на разрезе видна одна колонна), шириной вверху 3,22 м, а внизу 3,50 м. Колонна составлена из отдельных, сболченных между собой чугунных звеньев. Нижняя часть колонны отделена потолком от остальной части, и от образованной таким образом камеры проведены две опускные или шахтные трубы к установленному наверху колоколу с воздушными шлюзами. Части колонн кругом шахт, над потолком рабочей камеры, оставались сверху открытыми и наполнены были водой для погружения колонн на дно. По мере опускания наращивались новые звенья колонн и удлинялись шахты, в верху которых снова надставлялся колокол со шлюзами. Работы эти производились с постоянных подмостей. Грунт подымался через шахтные трубы бадьями, с помощью рукоятки и зубчатых колес, установленных внутри колокола, причем одновременно одна бадья подымалась, а другая опускалась. После погружения колонн до потребной глубины рабочая камера заполнена была бетоном, который образовал достаточно прочный слой для противодействия напору воды снизу. После того откачали воду из верхних частей колонн, сняли шахтные трубы и потолок рабочей камеры и заполнили бетоном также все остальное пространство внутри колонн. Заполняемые бетоном трубчатые опоры, опущенные пневматическим способом, составляют переходную ступень к кессонным основаниям в современном виде, в которых К. небольшой высоты поддерживает столб каменной кладки, образующий опору моста. Верхняя часть колонны в них заменена металлической обшивкой небольшой толщины, а иногда опора оставляется без всякой обшивки, так как весь груз поддерживается кладкой. В некоторых же случаях, для еще большого сбережения металла, делают и самый К., т. е. рабочую камеру, из каменной кладки, в виде свода из клинкерного кирпича, употребляя металл лишь на шахты и шлюзы, которые притом по окончании работ снимаются и годятся для дальнейшего употребления. В Америке с успехом применены были также и деревянные К. Металлический К., наиболее употребительный, состоит из нижней рабочей камеры, обыкновенно из котельного железа, соединенной с помощью вертикальных труб (шахт) со шлюзными камерами (фиг. 2).

Иногда одна и та же шахта служит как для спуска рабочих в камеру, так и для подъема грунта, иногда же устраиваются отдельные шахты для входа и выхода рабочих (средняя шахта на фиг. 2) и для выемки грунта (обе крайние шахты на том же фиг.). В стенки шлюза вделаны краны, на которые с наружной стороны шлюза надевается резиновая трубка от воздуходувной машины для нагнетания воздуха в рабочую камеру. Наружное очертание рабочей камеры соответствует предполагаемому очертанию опоры. Она бывает овальная, прямоугольная или многоугольная. Высота рабочей камеры была: в К. моста через Дунай в Пеште - 2 м, в новейших К. во Франции - 2,2 м, через Эльбу у Стендаля - 2,6м, через Миссисипи у Сент-Луиса - 2,75 м, через Ист-Ривер в Нью-Йорке (деревянные К.) - 2,9 м. Потолок камеры должен быть устроен весьма прочно, так как во время погружения К. он поддерживает весь массив каменной надстройки. Поэтому он составляется из ряда поперечных и продольных балок двутаврового сечения, между которыми выводятся сводики из кирпича. Снизу потолок обшивается котельным железом, в нем оставляются отверстия для шахтных труб круглого или эллиптического сечения. Во избежание выпучивания боковых стенок рабочей камеры, под каждой поперечиной потолка помещается ряд консолей или кронштейнов из листов котельного железа. Кронштейны эти прикрепляются как к потолку, так и к стенкам камеры. Вместе с тем они служат теми ребрами, к которым прикрепляются снаружи железные листы, составляющие стенки камеры. Консоли связаны между собой в двух или трех местах по высоте легкими балочками. Иногда промежутки между кронштейнами заполняются кирпичной кладкой (фиг. 3.).

Нож камеры, т. е. нижнее ребро К., устраивается настолько прочно, чтобы он не мог повреждаться, если при погружении в грунт К. попадет на камень или другое твердое тело. Нож усиливается обыкновенно железным угольником и двумя или более узкими полосами котельного железа. Стенки рабочей камеры усиливаются угольниками также в нескольких других местах по высоте (фиг. 2 и 3). Допускаемое напряжение котельного железа в К., при обыкновенных условиях, принимается до 1500 кг на кв. см. Вес кессона (в кг) можно при предварительных расчетах принять в 280А +130В , где А - обвод (в метрах), B - площадь камеры (в кв. м). При устройстве рабочей камеры из каменной кладки, нож К. делается металлическим, причем поверх его располагается металлическое плоское кольцо, служащее основанием для каменной кладки камеры, а в вершине свода заделывается металлический потолок, от которого идут вверх шахтные трубы (мосты через Одер в Штеттине и через Эльбу у Лауенбурга, Марманский виадук на разливе Гаронны, путепровод на Бессарабской ветви Юго-Западных железных дорог). Гигантский пример К. с деревянной рабочей камерой представляет сооружение моста через Ист-Ривер в Нью-Йорке, где для береговых устоев построены были два деревянных К. с площадью основания 1594 и 1632 кв. м. Для предотвращения пожарной опасности, стены и потолок второго, позже построенного К. обшиты были внутри котельным железом. Воздушные шлюзы составляют весьма существенную принадлежность К., от рационального устройства и исправного действия которых зависит успешность работ, а иногда и безопасность занятых в К. рабочих. Для избежания устройства шахтных труб, шлюзы иногда помещаются в самой камере К., непосредственно под потолком. Это расположение представляет большие удобства для удаления выкапываемого в К. грунта, но при этом шлюзы легко могут быть повреждены при случающихся внезапных осадках К., и потому расположение шлюзов внутри рабочей камеры небезопасно. При помещении шлюзов вне рабочей камеры над самим потолком необходимо оставить для них место в кладке. Возвышение шлюзов над поверхностью воды требует устройства шахтных труб, которые приходится наращивать по мере опускания К. и при этом снимать и переставлять шлюзы. Кроме того, это значительно затрудняет вынимание грунта, а также спуск и выход рабочих. Зато расположение шлюзов над горизонтом воды наиболее безопасно, а потому это расположение чаще всего применяется. Шлюзы бывают однокамерные, двух- и трехкамерные. Первые употребляются лишь тогда, когда они назначаются исключительно для передвижения рабочих, причем выемка грунта производится через другие трубы. Если производить выноску грунта через ту же трубу, по которой передвигается рабочий, то для возможности беспрерывного вынимания грунта необходимо дать шлюзу такие размеры, чтобы в нем можно было складывать некоторое количество грунта, который временами выбрасывают наружу, закрыв на это время сообщение шлюза с шахтной трубой. При этом вытаскивание грунта на некоторое время прерывается. После каждого выбрасывания грунта необходимо снова нагнетать в шлюз сжатый воздух (мост через Оку на Ряжско-Вяземской железной дороге). В двух камерных шлюзах при выбрасывании грунта из одной камеры подъем его во вторую камеру не прекращается (Ковровский мост через Клязьму на Нижегородской железной дороге). Трехкамерный шлюз имеет то преимущество, что вынимание грунта производится непрерывно; пока опоражнивается одна боковая камера, вынимаемый грунт складывается во вторую боковую камеру (мосты через Днепр у Кременчуга, Литейный мост через Неву). На фиг. 4 и 5 представлен трехкамерный шлюз системы Гертнера.

Средняя камера B служит для входа и выхода рабочих, а две боковые C , не сообщающиеся с камерою B , - для подъемки и складывания грунта. Главная камера A находится в постоянном сообщении с шахтной трубой, а следовательно, и с рабочей камерой. Подъем грунта производится с помощью помещенной в шахтной трубе нории, причем содержимое черпаков вываливается в лоток d , который можно передвигать с помощью рукоятки так, что грунтом наполняется попеременно то правая, то левая боковая камера. Для вываливания грунта из камеры открывают на дне ее клапан p , которым можно управлять извне. Рабочие могут спускаться в шахту через люк b в дне камеры B , не препятствуя подъемке грунта. Кроме того, эта камера имеет две двери, из которых одна наружная, а другая служит для сообщения с главной камерой шлюза A. Через такой шлюз можно вынуть из К. до 40 куб. м грунта в сутки. Существенную принадлежность шлюзов составляют затворные двери и краны. Для открывания и закрывания их устроены особые механизмы. Кранами управляет рабочий, помещающийся в шлюзе (крановщик). Одним из этих кранов шлюз сообщается с наружным воздухом и, после закрытия двери, ведущей из рабочей камеры в шлюз, пользуются этим краном для выпуска сжатого воздуха из шлюза. Второй кран соединяет шлюз с воздуходувной машиной и служит для наполнения шлюза сжатым воздухом после входа рабочих в шлюз и затвора наружной двери. Шахтные трубы делаются круглого или овального сечения, причем под шлюз помещается одна широкая труба или две трубы малого диаметра. Если грунт добывается нориями, то размеры шахтных труб бывают довольно значительны, в зависимости от диаметра шкивов и размера черпаков. Воздухопроводные трубы бывают медные или чугунные. Ввиду того, что К. постоянно опускается, а воздуходувная машина часто помещается на барках, металлический воздухопровод соединяется с К. и с воздушным резервуаром машины каучуковыми трубами со спиральной проволокой внутри. Трубка, соединенная со шлюзом, снабжена открывающимся внутрь клапаном, так что воздух, которым наполнен К., не может выйти обратно при повреждении воздуходувных труб и машины. Вообще необходимо принимать всевозможные меры, чтобы давление воздуха внутри К. не могло опуститься ниже определенного предела, так как в таком случае рабочая камера может быть моментально затоплена, причем погибают находящиеся в ней рабочие. Вынимание грунта производится иногда с помощью нории в открытой трубе, опущенной нижним концом в вырытую в рабочей камере яму, так что труба всегда наполнена водой и сжатый воздух не имеет к ней доступа (Кельнский мост через Рейн). Неудобство этого способа состоит в том, что при разрыве нории приходится исправлять ее с помощью водолаза, прекращая работы на значительное время. Поэтому обыкновенно предпочитают шлюзовать грунт, устанавливая норию в шахтной трубе (Аржантейльский мост через Сену, мост через Днепр у Кременчуга), или вынимая грунт ведрами, поднимаемыми рабочими с помощью лебедки, установленной внутри шлюза (мосты через Оку на Ряжско-Вяземской железной дороге, через Клязьму у Коврова на Нижегородской железной дороге), или мешками (мост через Волгу у Сызрани). Сыпучий и жидкий грунты можно также удалять из К. механически, действием сжатого воздуха, при помощи песочного насоса. Он состоит из заложенной в кладке вертикально газовой трубки (диаметром 4-9 см), верхний конец которой выведен наружу и загнут вниз, чтобы сыплющийся из него песок мог быть спущен в воду или в подставленный сосуд. В рабочей камере трубка оканчивается краном, не доходя на 0,5 м до дна. Для удаления грунта открывают кран, и тогда сжатый воздух, устремляясь в трубу, увлекает с собой подбрасываемый лопатами песок, а иногда под трубкой подставляется воронка, в которую сыплют песок (мост через Ист-Ривер у Нью-Йорка). Для этой же цели в некоторых случаях употребляют струйные насосы, в которых размельченный грунт увлекается быстрым током водяной струи под действием высокого давления (мост через Миссисипи у Сент-Луиса). Спуск К. на воду при небольшой глубине, до 4 м, производится с постоянных подмостей (фиг. 6), при более же значительной глубине устанавливают К. на барже или на плашкоуте, судно затопляют посредством нагрузки его камнями и всплывший К. подводят между двумя баржами к назначенному для погружения его месту.

Иногда же для спуска К. пользуются плавучими подмостями (набережные Антверпенского порта) или понтонами (Тейский мост в Шотландии). Во всех этих случаях движение К. направляется цепями, с помощью которых он подвешен к постоянным или плавучим подмостям. После спуска К. на воду начинают возводить над потолком его каменную кладку, и по мере ее возвышения К. опускается, причем движение его направляется все время поддерживающими его цепями. Достигнув дна, К., вместе с находящейся на потолке его кладкой, оседает на более или менее значительную глубину. Заблаговременно устанавливают на шахтных трубах шлюзы и соединяют воздухопровод с воздуходувной машиной, которая может быть установлена или на берегу, или на судне, поставленном на якорях возле кессонных подмостей, и немедленно приступают к накачиванию воздуха (фиг. 7).

Сжатый воздух вытесняет воду из рабочей камеры, так что дно в ней обнажается. Тогда в К. входят рабочие и подкапываются под нижнюю кромку К., который вследствие этого садится глубже. Вынутый из-под К. и по всей поверхности дна, занятого К., грунт поднимается наверх в шлюз, оттуда выбрасывается наружу, на баржи или в воду. В то же время над потолком К. каменщики продолжают кладку. По мере углубления К. кладка растет, шахтовые трубы наращиваются, и когда наконец К. погрузится до нужной глубины, закладывают камнем всю рабочую камеру, а также и шахтовые трубы - и основание сооружения готово.

В прежнее время к применению К. решались прибегать лишь при необходимости устройства оснований на глубинах от 9 до 10 м под водой, в настоящее время этот способ применяется уже для глубин от 3 до 4 м. Пределом, при котором употребление К. становится уже выгодным, считают глубину от 4 до 5 м. Наиболее значительные кессонные работы в России исполнены были при постройке Киевского железнодорожного моста (первые кессонные работы в России, в 1867 г., строитель инженер-генерал-майор А. Е. Струве), Кременчугского моста через Днепр и моста Императора Александра II (Литейного) через Неву, в СПб. Затем следуют Александровский мост через Волгу у Сызрани и многие другие железнодорожные мосты. Сгущенный иногда до 3 и более атмосфер, воздух К. оказывает на человеческий организм известное влияние, которое вызывает необходимость принятия некоторых мер осторожности для сбережения здоровья работающих в К. людей. К работам этим должны допускаться лишь вполне здоровые и крепкие люди, причем над ними должен быть установлен врачебный надзор. Рабочая смена должна продолжаться не более 6 часов. С возрастанием давления продолжительность смены должна быть соответственно уменьшена. Выпускать рабочих из К. следует осторожно. Для точного контроля давления в рабочей камере К. должны быть установлены манометры.

Подземная или подводная часть сооружения, которая передает его грунтовому основанию статическую нагрузку, создаваемую весом сооружения, и дополнительные динамические нагрузки, создаваемые ветром либо движением воды, людей, оборудования или… … Энциклопедия Кольера