Ликвидация бизнеса. Приказы. Оборудование для бизнеса. Бухгалтерия и кадры
Поиск по сайту

Жидкокристаллические индикаторы производства мэлт. Электронные средства сбора, обработки и отображения информации. Работающие на отражение

Русак С.В. 09-гео-1

Лабораторная работа №7

ЖИДКОКРИСТАЛЛИЧЕСКИЕ ИНДИКАТОРЫ

Жидкокристаллические индикаторы (ЖКИ) являются пассивными индикаторами, преобразующими падающий на них свет. Они обладают рядом достоинств, к числу которых относятся:

· малая потребляемая мощность (для ЖКИ на основе твист-эффекта удельная мощность потребления несколько единиц мкВт/см 2)

· низкие рабочие напряжения (1,5-5 В) и хорошая совместимость с КМОП-микросхемами

· удобное конструктивное исполнение - плоская форма экрана и ограниченная толщина индикатора (до 0,6 мм);

· возможность эффективной индикации в условиях сильной внешней засветки;

· большая долговечность (около 10-12 лет непрерывной работы).

Основные недостатки - сравнительно низкое быстродействие, ограниченный угол обзора и необходимость внешнего освещения.

Жидкие кристаллы (ЖК) называют также анизотропными жидкостями электрические и оптические свойства которых, зависят от направления их наблюдения. Плотность ЖК близка к плотности воды и незначительно отличается от единицы. Жидкие кристаллы - диамагнитный материал; ЖК выталкиваются из магнитного поля; ЖК относятся к диэлектрикам; удельное сопротивление составляет 10 6 – 10 10 Ом-см и зависит от наличия и концентрации проводящих примесей. Теплопроводность ЖК в направлении вдоль молекул отличается от теплопроводности в поперечном по отношению к молекулам направлении

Работа ЖКИ основана на явлении поляризации светового потока. Известно, что так называемые кристаллы поляроиды способны пропускать только ту составляющую света, вектор электромагнитной индукции которой лежит в плоскости, параллельной оптической плоскости поляроида. Для оставшейся части светового потока поляроид будет непрозрачным. Таким образом поляроид как бы "просеивает" свет, данный эффект называется поляризацией света. Когда были изучены жидкие вещества, длинные молекулы которых чувствительны к электростатическому и электромагнитному полю и способны поляризовать свет, появилась возможность управлять поляризацией. Эти аморфные вещества за их схожесть с кристаллическими веществами по электрооптическим свойствам, а также за способность принимать форму сосуда, назвали жидкими кристаллами.

В ЖКИ наблюдаются электрооптические эффекты, связанные с движением вещества - динамическое рассеяние (ДР), а также с поворотом молекул в электрическом поле -твист-эффект (ТЭ) и эффект гость -хозяин (Г -X). Конструктивные схемы простых ЖКИ показаны на рис. 1.

Основой простейшего индикаторного элемента с использованием ЖК являются две стеклянные пластины. Вне зависимости от используемого электрооптического эффекта ЖКИ разделяются на два класса: индикаторы, работающие на просвет, и индикаторы, работающие на отражение. У первых (рис..1,а) обе стеклянные пластины прозрачны; электродами служат прозрачные электропроводящие пленки (например, двуокись олова), между которыми помещено ЖК вещество. За индикатором помещается источник света. Цвет и яркость индикатора определяются цветом и яркостью источника света. У вторых (рис. 1,б) «задний» электрод изготовлен в виде зеркала; на соответствующую пластину наносится прозрачная, проводящая, отражающая свет пленка (например, пленка алюминия, никеля, золота). Такой индикатор использует внешнее отражающее освещение (специальная подсветка отсутствует).

В ЖКИ, работающем на основе ДР, при приложении электрического поля напряженностью около 5 кВ/см (примерно 30 В - к пленке ЖК толщиной 0,25 мм) молекулы переориентируются, возникают турбулентность и сильное оптическое рассеяние. Материал, прозрачный в отсутствие поля, становится непрозрачным. В таком ЖКИ, работающем на отражение, задний электрод представляет собой зеркало, на котором при подаче напряжения появляются участки молочно-белого цвета, форма которых соответствует конфигурации электродов. Для повышения однородности и четкости изображения, а также срока службы на поверхность проводящих слоев наносится тонкое химически инертное по отношению к ЖК оптически прозрачное покрытие. Материалом таких покрытий служат винилацетатные смолы, смолы"на основе этилена, эпоксидные компаунды и т. п.

В ЖКИ с использованием ТЭ, работающем на отражение, стеклянные пластины расположены между двумя скрещенными поляризаторами, за задним из которых помещен диффузный отражатель. Поверхности пластин, обращенные к ЖК, полируются, чтобы молекулы ЖК в слоях, прилегающих jc ним, ориентировались во взаимно перпендикулярных направлениях; в промежуточных слоях осуществляется постепенный поворот направлений ориентации.

В отсутствие электрического поля свет в индикаторе следует за вращением молекул и на выходе индикатора плоскость его поляризация оказывается повернутой на 90°; свет проходит через индикатор. При наличии электрического поля ориентация молекул изменяется, плоскость поляризации света, проходящего через индикатор, не вращается и свет не проходит через индикатор. Так как отражатель диффузный, на слабоокрашенном сером фоне отображаются темные знаки.

Опыт практического применения ЖКИ на эффекте ДР и ТЭ выявил достоинства индикаторов этих типов, показал их конкурентоспособность с другими классами индикаторов. К" числу достоинств таких ЖКИ относится высокая эффективность. Индикаторы на эффекте ДР характеризуются уровнем потребляемой мощности 5... 10 мкВт/см 2 для постоянного тока (0,5... 1,0 мкА/см 2) и 50... 200 мкВт/см для переменного тока (2... 10 мкА/см). Для индикаторов на основе ТЭ удельная потребляемая мощность составляет не более 20 мкВт/ см 2 (менее 2 мкА/см 2). К достоинствам ЖКИ на эффекте ДР и ТЭ можно отнести способность сохранять и увеличивать контраст изображения при повышении уровня внешней освещенности, прямую совместимость с КМОП-микросхемами, обеспечивающую возможность низковольтного управления ЖКИ; рабочее напряжение ЖКИ на эффекте ДР не превышает 20, а на ТЭ - 5 В. Они имеют удобное конструктивное оформление. Индикаторы плоские; толщина индикатора практически определяется толщиной двух стекол и может составлять 0,6... 0,8 мм. Велика их долговечность при эксплуатации на переменном токе - более 40 тыс. ч.

Индикаторы на эффекте ДР и ТЭ преимущественно применяются там, где экономичность играет решающую роль: в электронных наручных часах, микрокалькуляторах с автономным питанием, портативных многофункциональных измерительных приборах

В индикаторах на эффекте Г-X тонкий слой ЖК - «хозяина» взаимодействует с молекулами «гостя». Слой ЖК - хозяина за счет поглощения световой энергии при отсутствии электрического поля приобретает характерную для красителя (гостя) окраску; под воздействием электрического поля он обесцвечивается. Но существуют также вещества гостя и хозяина, в которых окрашивание происходит под воздействием электрического поля. Цветовые различия в индикаторах на эффекте Г-X хорошо воспринимаются в условиях высокой освещенности даже при небольшом яркостном контрасте.

Жидкокристаллические индикаторы, предназначенные для работы в условиях низкой освещенности- (менее 35 кд/м 2) работают с подсветкой. Для подсветки используются лампы накаливания со средней мощностью примерно 0,5 Вт для знака высотой 2,5 см. Подсветка может быть создана различными

Рис. 3. Конструкции ЖКИ с подсветкой:

1 - ЖК; 2,6 - лампа подсветки; 3 - рефлектор; 4 - жалюзи; 5 - направление излучения лампы (сплошными линиями со стрелками показано оптимальное направление наблюдения-изображения)

способами, например с использованием лампы накаливания, свет которой проходит через жалюзи, что обеспечивает удобство наблюдения изображения в направлении, перпендикулярном поверхности индикации (рис..3,а). Для увеличения угла обзора можно попользовать две лампы накаливания (рис. 3,б). Сверхминиатюрную лампу накаливания можно встроить непосредственно между пластинами ЖК (рис.3,в).

Для повышения механической прочности ЖКИ изготовляют с металлическими крышками, которые закрывают заднюю стеклянную пластину, слой ЖК и герметически соединяются с лицевой пластиной. Такое конструктивное решение повышает влагостойкость индикатора. Для этого же ЖКИ размещают в пластмассовых корпусах. Источник опорного напряжения U 0 n подключен к выводам оптически прозрачного электрода, имеющего высокое сопротивление. Измеряемое напряжение U из подано - между одним из концов этого же электрода и электродом с низким сопротивлением. Распределение потенциала по длине индикатора при трех значениях измеряемого напряжения (U из =0, 0< U из

Участок невозбужденного жидкого кристалла; соответствующий отрезку длины индикатора, на котором выполняется условие |U 3 an+U 0 n|

Управление ЖКИ

Способы управления индикаторными панелями на основе ЖК материалов определяются особенностями их физических эффектов. При работе на постоянном токе долговечность примерно на порядок ниже, чем на переменном. Это обусловлено миграцией примесей к электродам под действием постоянной составляющей управляющего сигнала, что ведет к снижению контрастности изображения. На рис 9 приведена схема импульсов управления напряжениями сдвинутыми по фазе так что на пары электродов подается биполярный сигнал не имеющий постоянной составляющей.

Время запаздывания включения и выключения ячеек ЖК индикатора показывает, что время выключения на порядок превосходит время включения. Известны способы уменьшения времени выключения путем подачи короткого импульса с высокой амплитудой или возбуждающего напряжения частотой 10 – 40 кгц в течение нескольких миллисекунд

©2015-2019 сайт
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2016-04-27

На рис. 8.8, а показана схема возбуждения сегментов сигналом переменного напряжения . Устройство состоит из двух логических схем И с двумя входами ОО2, 003, инвертора 001 и ключа-формирователя на транзисторе УТ. На коллектор транзистора подается напря­жение, равное двойной амплитуде номинального переменного напряжения возбуждения данного жидкокристаллического индикатора.

На вход 002 подается напряжение возбуждения с частотой = (30.. .50) Гц, а на вход £ШЗ - напряжение гашения с частотой/г = (10...40) кГц. При низком логическом уровне управляющего сигнала открывается 002, и транзистор работает в импульсном режиме с частотой, соответствующей частоте возбуждения ЖК-сегмента. Управляющий сигнал с высоким логическим уровнем, поступающий с дешифратора на управляющий вход, от­крывает Б03. В результате устройство формирует напряжение повышенной частоты, на ко­торую ЖК-сегмент не реагирует. С учетом того, что устройство управления должно быть соизмеримо по потребляемой мощности с ЖК-индикатором, все логические схемы выпол­нены на основе КМДП-структур.

Кроме описанного, используется также другой тип устройства возбуждения ЖК-инди - каторов (рис. 8.8, б). На входе логических схем 002 и 003 от внешнего генератора подают­ся импульсные напряжения с частотой/в = (15...20) Гц, сдвинутые по фазе относительно друг друга на 180°. В зависимости от уровня управляющего сигнала на сегмент индикатора через ключ-формирователь (транзистор УТ) прикладывается напряжение прямоугольной формы, прямое либо сдвинутое по фазе. На общий электрод индикатора через другой ключ- формирователь (транзистор УТ2) постоянно подается сигнал одной фазы.

При совпадении фаз на электродах сегмента последний не возбуждается, при различии фаз происходит возбуждение сегмента. Отметим, что фазовый способ управления позволяет уменьшить напряжение питания индикатора в два раза.

При использовании многоразрядных индикаторов требуется большое число внешних соединений, необходимых для управления сегментов. Это заставляет прибегнуть к созда­нию мультиплексорного управления. На рис. 8.9 показан принцип управления четырехраз­рядным индикатором с разделенными общими электродами для каждого разряда, который заключается в объединении идентичных сегментов по всем разрядам и последовательной адресацией данных в соответствующие разряды. Процесс отображения четырехразрядного числа осуществляется по тактам. В каждом такте переменное управляющее напряжение прикладывается к шине управления сегментов и к линии общего электрода того разряда, ко­торый возбуждается в данном тракте. Благодаря большому времени релаксации жидких кристаллов, цифры разрядов в период между тактами возбуждения продолжают читаться без приложения напряжения.

Название : Справочник - Знакосинтезирующие индикаторы.

Приведены подробные справочные данные о серийно выпускаемых типах индикаторов: электролюминесцснтных, вакуумных люминесцентных, вакуумных накаливаемых, полупроводниковых, газоразрядных, жидкокристаллических. Кратко описаны физические процессы, принципы конструирования, параметры и характеристики, области применения. Рассмотрены схемы управления.

Содержание.

Предисловие редактора. 8
Введение. 10
ЧАСТЬ I. ОБЩИЕ СВЕДЕНИЯ
1. Классификация и условные обозначения знакосинтезирующих индикаторов.
1.1. Классификация. 13
1 2. Условные обозначения. 16
1.3. Основные светотехнические параметры знакосинтезирующих индикаторов.
2. Вакуумные люминесцентные и никаливаемые знакосинтезирующие индикаторы. 27
2.1. Физический принцип действия вакуумных люминесцентных индикаторов.
2.2. Конструктивные особенности вакуумных люминесцентных индикаторов. 28
2.3. Принцип действия и управления вакуумных люминесцентных индикаторов.
2.4. Типы вакуумных люминесцентных индикаторов и их основные параметры.
2.5. Области применения вакуумных люминесцентных индикаторов. 32
2.6. Вакуумные накаливаемые знакосинтезирующие индикаторы. 33
3. Газоразрядные знакосинтезирующие индикаторы. 35
3.1. Физический принцип действия. 35
3.2. Конструктивные особенности. 43
3.3. Принцип управления. 45
3.4. Основные параметры. 49
3.5. Области применения и перспективы развития. 49
4. Жидкокристаллические знакосинтезирующие индикаторы. 50
4.1 Электрооптические эффекты в жидких кристаллах, используемые в индикаторах. 50
4.2. Особенности конструкции жидкокристаллических индикаторов. 55
4.3. Принципы управления. 57
5. Полупроводниковые знакосинтезирующие индикаторы. 60
5.1. Физический принцип действия. 60
5.2. Основные материалы. 62
5.3. Конструктивные особенности. 64
5.4. Управление индикаторами. 65
5.5. Перспективы развития. 68
6. Электролюминесцентные знакоситезирующие индикаторы. 69
6.1. Физический принцип действия. 69
6.2. Конструктивные особенности. 71
6.3. Типы электролюминесцентных индикаторов и их основные параметры. 73
6.4. Области применения. 74
7. Методика оценки эффективности применения знакосинтезирующих индикаторов в средствах отображения информации. 76
7.1. Основы методики. 76
7.2. Алгоритмы оценки эффективности применения знакосинтезирующих индикаторов в средствах отображения информации. 83
8. Рекомендации по применению и эксплуатации. 85
8.1. Выбор знакосинтезирующих индикаторов. 85
8.2. Эксплуатация знакосинтезирующих индикаторов. 135
ЧАСТЬ II. ОСНОВНЫЕ ПАРАМЕТРЫ И ХАРАКТЕРИСТИКИ ЗНАКОСИНТЕЗИРУЮЩИХ ИНДИКАТОРОВ И СХЕМ УПРАВЛЕНИЯ ИМИ.
Общие сведения. 137
Условные обозначения параметров. 137
Единичные знакосинтезирующие индикаторы. 140
Вакуумные люминесцентные знакосинтезирующие индикаторы. 140
Газоразрядные знакосинтезирующие индикаторы. 152
Полупроводниковые знакосинтезирующие индикаторы. 156
Электролюминесцентные знакосинтезирующие индикаторы. 175
Цифровые знакосинтезирующие индикаторы. 179
Цифровые одноразрядные знакосинтезирующие индикаторы. 179
Вакуумные люминесцентные знакосинтезирующие индикаторы. 179
Вакуумные накаливаемые знакосинтезирующие индикаторы. 197
Газоразрядные знакосинтезирующие индикаторы. 210
Жидкокристаллические знакосинтезирующие индикаторы. 213
Полупроводниковые знакосинтезирующие индикаторы. 215
Электролюминесцентные знакосинтезирующие индикаторы. 276
Цифровые многоразрядные знакосинтезирующие индикаторы. 278
Вакуумные люминесцентные знакосинтезирующие индикаторы. 278
Газоразрядные знакосинтезирующие индикаторы. 312
Жидкокристаллические знакосинтезирующие индикаторы. 317
Полупроводниковые знакосинтезирующие индикаторы. 351
Буквенно-цифровые знакосинтезирующие индикаторы. 355
Вакуумные люминесцентные одноразрядные знакосинтезирующие индикаторы.
Газоразрядные одноразрядные знакосинтезирующие индикаторы. 382
Жидкокристаллические одноразрядные знакосинтезирующие индикаторы. 388
Полупроводниковые одноразрядные знакосинтезирующие индикаторы. 390
Электролюминесцентные одноразрядные знакосинтезирующие индикаторы. 407
Газоразрядные многоразрядные знакосинтезирующие индикаторы. 412
Шкальные знакосинтезирующие индикаторы. 425
Вакуумные люминесцентные знакосинтезирующие индикаторы. 425
Газоразрядные знакосинтезирующие индикаторы. 428
Полупроводниковые знакосинтезирующие индикаторы. 435
Электролюминесцентные знакосинтезирующие индикаторы. 56
Мнемонические знакосинтезирующие индикаторы. 459
Вакуумные люминесцентные знакосинтезирующие индикаторы. 459
Жидкокристаллические знакосинтезирующие индикаторы. 463
Электролюминесцентные знакосинтезирующие индикаторы. 479
Графические знакосинтезирующие индикаторы. 488
Вакуумные люминесцентные знакосинтезирующие индикаторы. 488
Газоразрядные знакосинтезирующие индикаторы. 497
Полупроводниковые знакосинтезирующие индикаторы. 543
Электролюминесцентные знакоснинтезирующие индикаторы. 554
Интегральные схемы управления знакосинтезирующими индикаторами. 560
Список литературы.

Классификация знакосинтезирующих индикаторов .

В настоящее время принята классификация ЗСИ по следующим признакам: виду отображаемой информации; виду элементов отображения информации и способу формирования информационного поля; расстоянию наблюдения и числу наблюдателей; помехоустойчивости; привычности начертания знаков; числу знакомест; способу преобразования энергии; физическому принципу, положенному в основу работы; конструктивному оформлению; материалу корпуса; значению питающего напряжения; виду питающего напряжения (тока); числу элементов; способу управления.

По виду информации, для отображения которой ЗСИ предназначены, они делятся на: единичные - для отображения информации в виде точки, круга, квадрата, прямоугольника или другой простой геометрической фигуры; цифровые - для отображения информации в виде цифр; буквенно-цифровые - для отображения информации в виде букв различных алфавитов, цифр, знаков препинания, математических и других специальных знаков и символов; шкальные - для отображения информации в виде уровней или значений величин, дискретных, аналоговых и дискретно-аналоговых шкал или их частей как оцифрованных, так и неоцифрованных; мнемонические - для отображения информации в виде мнемосхем или их частей; графические - для отображения информации в виде букв различных алфавитов, цифр, знаков препинания, математических и других специальных знаков и символов, графиков и другой сложной информации, в том числе и телевизионной.

Бесплатно скачать электронную книгу в удобном формате, смотреть и читать:
Скачать книгу Справочник - Знакосинтезирующие индикаторы - Вуколов Н.И., Михайлов А.Н. - fileskachat.com, быстрое и бесплатное скачивание.

ИЖЦ71-5/7; ИЖЦ72-5/7

Цифровые пятиразрядные индикаторы ИЖЦ71 -5/7 и ИЖЦ72-5/7 с децимальной точкой в каждом разряде и встроенным микросхемным блоком управления предназначены для отображения цифровой информации в аппаратуре, устанавливаемой вне помещения (счетчики газа, жидкого топлива, электроэнергии, уличные термометры и т. п.).

Конструктивно индикатор представляет собой в общем виде две плоские тонкие стеклянные пластины, герметично склеенные по периметру с малым зазором, заполненным холодоустойчивым жидкокристаллическим веществом.

Работа индикатора основана на твист-эффекте в жидких кристаллах, для чего в конструкции предусмотрены два поляроида - две тонкие пленки, обладающие свойством поляризации проходящего через них света. Твист-эффект - это явление вращения плоскости поляризации поляризованного света тонким (около 20 мкм) слоем жидких кристаллов, исчезающее при действии на этот слой электрического поля. Плоскости поляризации света, обеспечиваемой каждым из поляроидов, взаимно перпендикулярны (их называют скрещенными).

Вообще говоря, система из скрещенных поляроидов света не пропускает, но если между ними разместить слой жидких кристаллов, в свою очередь, вращающий на 90 град, плоскость поляризации света, система становится прозрачной. Под действием электрического поля на какой-либо участок слоя жидких кристаллов они теряют способность вращать плоскость поляризации света и пропускание света прекращается. Зрительно это воспринимается как появление на светлом фоне темного, непрозрачного участка.

Электрическое поле должно быть знакопеременным, в противном случае в слое жидких кристаллов возникает электролитический процесс, приводящий к резкому сокращению срока их службы.

Индикатор ИЖЦ71-5/7 рассчитан для работы на отраженном свете, для чего на тыльную сторону прибора нанесено зеркальное покрытие. Индикатор ИЖЦ72-5/7 - полупрозрачный и работает на просвет, однако его можно перевести в отражательный режим, если установить позади прибора вплотную к нему зеркальную пластину.

Прибор снабжен двадцатью жесткими лужеными выводами квадратного сечения для подачи внешних сигналов. Внешний вид индикатора представлен на рис. 1. Масса прибора - не более 60 г.

Цоколевка индикатора представлена в табл.1.

Блок управления индикатора построен на основе бескорпусной сорокаканальной микросхемы КБ1835ИД1-4 структуры КМОП.

Как было указано, в индикаторе применено холодоустойчивое жидкокристаллическое вещество, допускающее нормальную работу прибора вплоть до температуры -30°С. При температуре ниже -30°С время смены информации на табло заметно увеличивается.

Необходимое быстродействие индикатора при температуре в пределах -30...-40°С обеспечивает специальный подогреватель, питающийся током. Это устройство выполнено на основе металлокерамики, имеет собственные выводы и поставляется отдельно от индикатора.

Для того чтобы предохранить поляроид индикатора, размещенный на его лицевой стороне, от повреждений при хранении и монтаже, табло на заводе-изготовителе прикрывают защитной пленкой. Перед началом эксплуатации прибора защитную пленку следует удалить.

Первые три буквы наименования индикатора означают Индикатор Жидкокристальный Цифровой, число 71 - порядковый номер разработки, цифра 5 - число разрядов, а 7 - число элементов изображения в разряде.

  • Потребляемый ток, мА, не более, при напряжении питания 5 В, частоте перезаписывания 100 Гц и частоте смены полярности возбуждения 100 Гц......0,2
  • Входное напряжение информационных сигналов в состоянии высокого уровня......4,5...5
  • низкого уровня......0...0,5
  • Входной ток цепей логических сигналов, мкА, не более......5
  • Время реакции, мс, не более......150
  • Время релаксации, мс, не более......150
  • Напряжение питания логических цепей, В......4,5...5,5
  • Рабочий температурный интервал, °С без подогревателя... -30...+65
  • с подогревателем.....-40...+65
  • Основные технические характеристики подогревателя
  • Сопротивление элемента, Ом......100...160
  • Мощность, потребляемая подогревателем при выходе на установившийся режим, Вт, не более......6
  • Мощность, потребляемая подогревателем в установившемся режиме, Вт, не более......3
  • Максимально допустимая температура элемента, °С.....+70

Внешнюю информацию индикатор принимает по восьмиразрядной линии DO - D7 по тактирующему сигналу CWR. После введения информации о всех элементах изображения во входной регистр блока управления (в течение пяти тактовых импульсов записи байта) на вход "Перезаписывание" поступает импульс WR, обеспечивающий перезаписывание информации из входного регистра в регистр хранения. Временные диаграммы, иллюстрирующие работу блока управления, представлены на рис. 2.

Из регистра хранения информация поступает в выходные формирователи, отвечающие за включенное или выключенное состояние элементов первого кадра в соответствии с принятой внешней информацией.

Новая информация второго кадра проходит тот же путь и поступает на табло. Таким образом, можно сказать, что блок управления имеет память на две страницы - одна хранит информацию о принятом кадре, а другая в это время записывает информацию о следующем кадре.

Формирование знакопеременного (без постоянной составляющей) возбуждающего индикатор напряжения происходит по сигналам COSL.

Функция "Инверсия выходной информации" предоставляет пользователю возможность подачи на индикатор информации как в прямом виде (когда высокому уровню на информационном входе соответствует включенный элемент табло), так и в инверсном (когда элемент табло включается низким входным уровнем). Прямое введение соответствует низкому уровню на входе Iп, а инверсное - высокому.

"Выход эстафетного сигнала" при использовании одиночного индикатора оставляют свободным. Если же необходимо наращивание числа разрядов индикации, рядом устанавливают второй такой же индикатор, а выв. 20 первого соединяют с внешним управляющим блоком.

Для индикаторов этого и других типов, способных работать в проходящем свете, выпускают специальные модули подсветки с лампами накаливания.

Жидкокристаллические индикаторы всех типов следует предохранять от длительного воздействия прямых солнечных лучей - это может привести к необратимой деструкции жидких кристаллов. По этой же причине следует оберегать индикаторы от статического электричества и перегревания при пайке.

ИЖЦ35-6/7

Шестиразрядные цифровые индикаторы ИЖЦ35-6/7 предназначены для отображения выходной информации в карманной электронной аппаратуре медицинского назначения с автономным питанием. Кроме шести цифровых разрядов, на табло размещены шесть мнемонических элементов. Работа индикатора основана на твист-эффекте. Прибор рассчитан на работу в отраженном свете; цвет изображения - черный, фон - светлосерый. Режим управления - статический.

Корпус - стеклянный, плоский (рис. 3). Выводы представляют собой прозрачные (на рисунке условно показаны черными) проводящие полосы - площадки, напыленные на стекло корпуса с лицевой стороны. Подключение индикатора к цепям устройств выполняют с помощью двух контактных резиновых гребенок, составленных из чередующихся проводящих и непроводящих участков.

Контактные площадки (их общее число - 52) размещены в два ряда, по одному на каждой длинной стороне корпуса. Если смотреть на табло прибора спереди (выступ-ключ на корпусе должен быть слева), то нижний ряд будет первым, верхний - вторым. Нумерация выводов в первом ряду (с 1 -го по 26-й) идет слева направо, а во втором (с 27-го по 52-й) - справа налево.

Цоколевка индикатора ИЖЦ35-6/7 (нумерация разрядов на табло увеличивается слева направо): выв. выв.

  • 1 - общий; выв.
  • 2 - элемент g разряда 1;
  • выв. 3 - е1;
  • выв. 4 - d1;
  • выв. 5 - с1;
  • выв. 6 - g2;
  • выв. 7 - е2;
  • выв. 8 - d2;
  • выв. 9 - с2;
  • выв. 10 - децимальная
  • точка разряда 2;
  • выв. 11 - g3;
  • выв. 12 - еЗ;
  • выв. 13 -d3
  • выв. 14 - сЗ;
  • выв. 15 -g4;
  • выв. 16 -е4
  • выв. 17 - d4;
  • выв. 18 - с4;
  • выв. 19 - g5
  • выв. 20 - е5;
  • выв. 21 - d5;
  • выв. 22 - с5
  • выв. 23 - g6;
  • выв. 24 - е6;
  • выв. 25 - d6
  • выв. 26 - с6; выв.27 - b6;
  • выв. 28 - а6
  • выв. 29 - f6;
  • выв. 30 - Д;
  • выв. 31 - Е
  • выв. 32 - b5;
  • выв. 33 - а5;
  • выв. 34 - f5
  • выв. 35 - Г;
  • выв. 36 - 3;
  • выв. 37 - b4
  • выв. 38 - а4;
  • выв. 39 - f4;
  • выв. 40 - bЗ
  • выв. 41 - В;
  • выв. 42 - аЗ;
  • выв. 43 - f3
  • выв. 44 - Ж;
  • выв. 45 - b2;
  • выв. 46 - Б
  • выв. 47 - а2;
  • выв. 48 - f2;
  • выв. 49 - b1
  • выв. 50 - А;
  • выв. 51 - а1;
  • выв. 52 - f 1.

Масса индикатора - не более 2 г.

Основные технические характеристики индикатора при Токр.ср = 25°С

  • Собственный яркостный контраст, %, не менее......83,3
  • Потребляемый ток, мкА, не более......2,5
  • Номинальное напряжение управления, В......2,8
  • Номинальная рабочая частота управляющего напряжения, Гц. .32
  • Время релаксации, мс,не более......300
  • Угол обзора, град......45
  • Срок сохраняемости, лет, не менее......6

Предельные эксплуатационные значения

  • Напряжение управления, В....2,6...3,1
  • Рабочая частота управляющего напряжения, Гц......30...64
  • Рабочий температурный интервал,°С......-1...+55

Основной параметр всех жидкокристаллических индикаторов, отражающий качество их работы, - контраст знака по отношению к фону. Контраст К определяют как отношение значений интенсивности света, выходящего из индикатора, в исходном и возбужденном состояниях. Этот параметр измеряют с помощью специальной оптической установки, основой которой служит микроскоп с встроенным фотоэлектронным умножителем тока на выходе.

Контраст вычисляют в процентах по формуле: К = (IФ - I3) 100/ Iф, где Iф - ток фона - выходной фототок электронного умножителя при выключенном индикаторе; l3 - ток знака - выходной фототок умножителя при возбужденном номинальным управляющим напряжением индикаторе (если изображение знака темнее фона табло).

Контраст выражают иногда в относительных единицах; в этих случаях из указанной формулы выпадает сомножитель 100.

ИЖЦ4-12/7

Двенадцатираэрядные цифровые твистэффектные индикаторы ИЖЦ4-12/7 работают на отражение света и предназначены для отображения информации в многофункциональных телефонных аппаратах и таксофонах. Цвет изображения - черный, фон - светлосерый. Режим работы индикатора - мультиплексный.

Кроме цифровых разрядов, на табло прибора размещены в строку семь слов, управляемых каждое так же, как и отдельный элемент разряда.

Прибор способен нормально работать при низких значениях температуры окружающей среды - до -30°С. Это достигнуто применением морозостойкого жидкокристаллического материала.

Корпус индикатора - стеклянный плоский (рис. 4); выводы - жесткие, луженые. Масса - не более 80 г.

Если расположить прибор лицевой стороной к себе и выводами вниз, то крайним слева окажется выв. 1, а крайним справа - выв. 39. Нумерация разрядов на табло увеличивается слева направо.

Цоколевка индикатора представлена в табл. 2 (цифровые разряды) и табл. 3 (слова).

Основные технические характеристики при Токр.ср = 25°С

  • Собственный яркостный контраст, отн. ед., не менее......0,9
  • Потребляемый ток, мкА, не более......50
  • Номинальное напряжение управления, В......3
  • Номинальная рабочая частота управляющего напряжения, Гц......64
  • Время реакции, мс, не более......200
  • Время релаксации, мс, не более......200
  • Минимальная наработка на отказ, ч......50 000
  • Минимальный срок сохраняемости, лет......4
  • Предельные эксплуатационные значения
  • Напряжение управления, В... .2,5...3,5
  • Рабочая частота управляющего напряжения, Гц......44...84
  • Рабочий температурный интервал, °С......-30...+55

Как было указано, индикатор рассчитан на мультиплексный режим управления с тактовым соотношением 1:3. Это означает, что после каждого временного такта возбужденного состояния того или иного элемента изображения следуют три такта отсутствия управляющего напряжения. В результате инерционности жидкокристаллического вещества яркостный контраст за это время не успевает заметно измениться. Далее процесс повторяется с тем же тактовым соотношением.

ИЖВ74-160Х16; ИЖВ76-160Х16

Буквенно-цифровые матричные индикаторы ИЖВ74-160х 16 и ИЖВ76-160Х16 со встроенным блоком управления предназначены для отображения буквенной и цифровой информации в портативной измерительной и вычислительной аппаратуре. Индикаторы ИЖВ74-160Х16 работают на отражение света, а ИЖВ76-160Х16 - на просвет. В основе работы индикаторов лежит твист-эффект. Включенные элементы изображения выглядят черными на светло-сером фоне.

На табло прибора размещены две строки длиной 149,1 мм, состоящие из 32 знакомест в каждой. Знакоместо имеет матричную структуру из 7X5 элементов прямоугольной формы. Размеры элемента 0,8x0,6 мм, размеры знакоместа 6,2x3,4 мм. Под каждой из строк расположена так называемая курсорная строка, состоящая из одинарного ряда элементов тех же размеров. Эти строки позволяют формировать перемещающиеся метки-указатели того или иного знака в строке.

Корпус индикаторов - стеклянный плоский (рис. 5,а). Выводы для приема сигналов управления выполнены в виде печатных токопроводящих дорожек из фольги на двух тонких (толщиной около 0,1 мм) гибких лентах из полиимида. На одной ленте - 12 выводов (эта группа обозначена Х1), на другой - 21 (Х2). Шаг выводов - 1,25 мм; ширина выводов - 0,6 мм.

Выводы сформированы на крайнем обрезе полиимидных лент справа от корпуса (если смотреть на лицевую сторону индикатора). Форма лент такова, что снизу оказывается лента с выводами группы Х2, причем их проводящая сторона обращена назад, а сверху - лента с выводами группы Х1, обращенными вперед.

На рис. 5,6 показано крупно расположение элементов знакомест индикатора. Размеры индикационного поля - 149,1X16,1 мм. Масса индикатора - 100 г.

В наименовании прибора буква В обозначает в принятой системе буквенно-цифровую группу индикаторов, числа 74 или 76 - порядковые номера разработки, а 160 и 16 указывают на число столбцов и строк соответственно, образующих информационное поле индикатора. Каждый элемент изображения образуется на пересечении своих строки и столбца.

Цоколевка индикатора представлена в табл. 4.

Основные технические характеристики при Токр.ср = 25 °С

  • Собственный яркостный контраст, отн. ед., не менее......0,75
  • Входное напряжение низкого логического уровня, В......0...0.5
  • Входное напряжение высокого логического уровня, В......4,5...5,5
  • Время реакции, мс, не более......200
  • Время релаксации, мс, не более......200

Предельные эксплуатационные значения

  • Напряжение питания логического блока индикатора, В......4,5...5,5
  • Тактовая частота управляющего логического блока, кГц......50...400
  • Рабочий температурный интервал окружающей среды, °С......-1...+55
  • Предельные значения температуры,°С......-45; +60

Встроенный логический блок управления строками и столбцами индикатора выполнен на бескорпусных микросхемах КБ1835ИД1-4 структуры КМОП. Каждая микросхема способна обслуживать 40 каналов (строк или столбцов). Временные диаграммы, иллюстрирующие работу блока, показаны на рис. 6.

Введение информации во входной регистр происходит параллельно-последовательно по входной восьмиразрядной линии D0 - D7 и тактируется сигналом CWR. За 20 тактов записывается входная информация о всех 160 элементах одной строки.

По фронту импульса WR входная информация параллельно переписывается из входного регистра в выходной. Этот же сигнал, поданный на узел управления строками, начинает сканировать следующую строку с ее начала. Процесс записи протекает слева направо вдоль по строке и сверху вниз по столбцам. Начальный бит D0 в каждом байте отображается слева.

Кадровую синхронизацию (установку начала развертки в левый верхний угол индикационного поля перед передачей кадра) обеспечивают импульсы SR, подаваемые на индикатор с внешнего блока управления. Формированием знакопеременного напряжения возбуждения индикатора управляет сигнал COSL

Кроме этого, на узел управления столбцами необходимо подать сигнал In. Если на входе In низкий уровень, то высокому уровню на входах D0 - D7 будут соответствовать включаемые элементы изображения, а низкому - не-включаемые. При высоком уровне на входе In, наоборот, высокому уровню на входах D0 - D7 соответствует невключение элементов, а низкому - включение. Для возбуждения элементов отображения используют шестиуровневый оптимизированный режим. Выходные цепи узла управления строками питаются по двум парам входов группы Х1 - U1, U2, U5, U6, а для узла управления столбцами - U1, U3, U4, U6 группы X2. Напряжение питания - от Uпит до -10 В. Эти сигналы формирует либо внешний блок управления, либо набор внешних резистивных делителей.

Принцип расчета значений U1 - U6 напряжения питания подробнее изложен ниже, при описании индикаторов ИЖГ96-240Х80 и ИЖГ97-240Х80.

ИЖГ96-240Х80; ИЖГ97-240Х80

Графические индикаторы ИЖГ96-240Х80 и ИЖГ97-240Х80 со встроенным блоком управления предназначены для отображения буквенной, цифровой и графической информации в портативной измерительной и вычислительной аппаратуре.

Индикатор ИЖГ96-240Х80 отражательный, а ИЖГ97-240Х80 - просветный. В основу работы приборов положен супертвист-эффект. Этим термином, бытующим в научно-технической литературе последние несколько лет, обозначают тот же твист-эффект, но реализованный в конструкциях более высоких технологий с более совершенными материалами. Супертвист-эффект обеспечивает более высокий контраст изображения и большее быстродействие.

Цвет включенных элементов на табло рассматриваемых приборов - темно-синий на светло-желто-зеленом фоне. Размеры индикационного табло - 131,9x43,9 мм.

Корпус - плоский стеклянный (рис. 7,а). Выводы выполнены в виде печатных фольговых дорожек на двух гибких лентах из полиимида. На одной ленте 12 выводов (группа Х1), на другой - 21 (Х2). Шаг выводов 1,25 мм, ширина выводов 0,6 мм.

Ленты выведены на правую сторону индикатора (если смотреть на лицевую сторону его табло), причем снизу находится лента с выводами группы Х2 проводящей стороной назад, а сверху - лента с группой Х1 проводящей стороной вперед.

На рис. 7,б показаны взаимное расположение и размеры элементов изображения на табло индикатора. Элементы изображения - точки квадратной формы - размещены на поле равномерно. Размеры одного элемента - 0,45x0,45 мм.

Масса индикатора - не более 80 г.

Буква Г в наименовании индикатора указывает на способ отображения информации - графический, числа 96 и 97 - порядковые номера разработки, а 240 и 80 - числа столбцов и строк соответственно, образующих информационное поле прибора.

По цоколевке индикаторы ИЖГ96-240Х80 и ИЖГ97-240х80 аналогичны ИЖВ74-160х16 и ИЖВ76-160Х16 (см. табл. 4).

Основные технические характеристики при Токр.ср=25°С

  • Собственный яркостный контраст, отн. ед., не менее......0,8
  • Ток, потребляемый логическим блоком управления, мА, не более......2
  • Ток, потребляемый выходными цепями блока управления, мА, не более......2
  • Входной ток информационных и логических входов, мкА, не более......20
  • Номинальное напряжение питания управляющего логического блока, В......5
  • Номинальная тактовая частота логической части управляющего блока, кГц......200
  • Время реакции, мс, не более......500
  • Время релаксации, мс, не более......500
  • Минимальная наработка на отказ, ч......3000
  • Минимальный срок сохраняемости, лет......4

Предельные эксплуатационные значения

  • Напряжение питания управляющего логического блока, В......4,5...5,5
  • Входное напряжение низкого логического уровня, В......0..0,5
  • Входное напряжение высокого логического уровня, В......4...5,5
  • Тактовая частота, кГц......120.. .400
  • Минимальная кадровая частота, Гц......50
  • Частота смены полярности напряжения возбуждения, Гц......100...500
  • Рабочий температурный интервал, °С......-1...+55
  • Предельные значения температуры окружающей среды, °С.......-45; +60

Встроенный логический блок управления строками и столбцами выполнен на бескорпусных микросхемах КБ1835ИД1-4. Общий принцип управления строками и столбцами таков же, как и у ИЖВ74-160Х16. Выходные цепи узле управления строками питаются также но пределы напряжения питания несколько шире - от Uпит до -12 В.

Диаграммы сигналов, формируемых узлами управления по строкам и столбцам и прикладываемых к выводам индикатора, изображены на рис. 8.

Значения U1-U6 напряжения питания узлов управления строками и столбцами (формируемые внешним блоком) должны удовлетворять следующим соотношениям: U1≤Uпит; U2=U1-U0; U3=U1-2U0; U4=U1-(a-1)U0; U5=U1-U0; U6≥-12 В, где Uпит=5±0,5 В; a=√n-9 - коэффициент оптимизации; п=80 - степень мультиплексирования (или, иначе, скважность сканирования строк); U0 - начальное напряжение, определяемое индивидуальными характеристиками индикатора и лежащее в пределах 1 ...2 В; типовое значение - 1,3 В.

Равенство разностей U1-U2=U2-U3= U4-U5=U5-U6=U0 должно быть обеспечено с точностью не менее ±1%. Точность задания коэффициента оптимизации должна находиться в пределах ±5%.

Все, что касается выбора значений напряжения питания выходных цепей узлов управления строками и столбцами, в равной мере относится и к индикаторам ИЖВ74-1 60х 16 и ИЖВ76-160х 16.

На рис. 9 показана зависимость собственного яркостного контраста от напряжения U1-U6. На рис. 10 - 12 изображены зависимости тока, потребляемого индикатором, от различных параметров - от напряжения U1-U6, от частоты fcwr и fcosi. соответственно.

Читайте и пишите полезные

Квантовая и оптическая электроника. Лекция N 1 1

ПАССИВНЫЕ ИНДИКАТОРЫ

В эту группу входят три вида пассивных индикаторов: жидкокристаллические индикаторы (ЖКИ), электрохромные и электрофоретические индикаторы (ЭХИ и ЭФИ). Последние два, в свою очередь, входят в состав электрохимических пассивных индикаторов.

1.Жидкокристаллические индикаторы

Принцип действия жидкокристаллических индикаторов (ЖКИ) основан на изменении оптических свойств жидких кристаллов под действием электрического поля. В отличие от активных индикаторов ЖКИ не генерируют оптическое излучение, а модулируют его интенсивность за счет изменения таких характеристик, как амплитуда, фаза, длина волны, плоскость поляризации и направление распространения.

Жидкокристаллические индикаторы (ЖКИ) являются пассивными индикаторами, преобразующими падающий на них свет.

Жидкокристаллическое или мезоморфно е состояние - это состояние вещества, при котором оно обладает свойствами, присущими как твердым кристаллам, так и жидкостям.

Рис.1


идкие кристаллы (ЖК) – это анизотропные жидкости, электрические и оптические свойства которых зависят от направления их наблюдения. В ЖК наблюдаются электрооптические эффекты, связанные с движением вещества: - динамическое рассеяние(ДР) , а также с поворотом молекул в электрическом поле - твист-эффект (ТЭ) и эффект гость - хозяин (Г-Х) .

Конструкции жки

Конструктивные схемы ЖКИ показаны на Рис.1.

Основой простейшего индикаторного элемента с использованием ЖК являются две стеклянные пластины. Вне зависимости от используемого электрооптического эффекта ЖКИ разделяются на два класса: индикаторы, работающие на просвет, и индикаторы, работающие на отражение. У первых (Рис.1.а) обе стеклянные пластины прозрачны; электродами служат прозрачные электропроводящие пленки (например, двуокись олова), между которыми помещено ЖК вещество. За индикатором помещается источник света. Цвет и яркость индикатора определяются цветом и яркостью источника света. У вторых: (Рис.1.б) «задний» электрод изготовлен в виде зеркала. Такой индикатор использует внешнее отражающее освещение (специальная подсветка отсутствует).

К

Рис.3

онфигурация электродов индикатора определяетсялибо формой исходных стеклянных пластин, либо технологией металлизации. Как правило, пластины и электроды плоские, но в ряде приборов внутренняя поверхность задней пластины имеет сложную форму (Рис.2), образующую ряд оптических элементов, обеспечивающих отражение излучения в направлении источника света.

В ЖКИ, работающем на основе ДР , при приложении электрического поля напряжённостью около 5 кВ/см (примерно 30 В - к пленке ЖК толщиной 0,25 мм) молекулы переориентируются, возникают турбулентность и сильное оптическое рассеяние. Материал, прозрачный в отсутствие поля, становится непрозрачным. В таком ЖКИ, работающем на отражение, задний электрод представляет собой зеркало, на котором при подаче напряжения появляются участки молочно-белого цвета, форма которых соответствует конфигурации электродов. Для повышения однородности и четкости изображения, а также срока службы на поверхность проводящих слоев наносится тонкое химически инертное по отношению к ЖК оптически прозрачное покрытие. Материалом таких покрытий служат винилацетатные смолы, смолы на основе этилена, эпоксидные компаунды и т.д. (Рис.3).

Заднюю стеклянную пластину индикатора чернят (Рис.4); тогда на черном фоне возникает белое изображение.

В

Рис.4

ЖКИ с использованием ТЭ , работающем на отражение, стеклянные пластины расположены между двумя скрещенными поляризаторами, за задним из которых помещен диффузный отражатель. Поверхности пластин, обращенные к ЖК, полируются, чтобы молекулы ЖК в слоях, прилегающих к ним, ориентировались во взаимно перпендикулярных направлениях; в промежуточных слоях осуществляется постепенный поворот направлений ориентации. В отсутствие электрического поля длинные оси молекул ЖК плавно поворачиваются на 90 0 , так что оси поляризации правой и левой плоскостей кристалла оказываются расположенными под прямым углом. В этом случае свет, проходящий через поляризатор, падает на ЖК слой и, поворачиваясь на 90 0 за счёт расположения молекул ЖК, достигает второго поляризатора. Т.о. оба поляризатора оказываются прозрачными для падающего света; свет проходит через индикатор. При наличии электрического поля ориентация молекул изменяется, плоскость поляризации света, проходящего через индикатор, не вращается и свет не проходит через индикатор. Так как отражатель диффузный, на слабоокрашенном сером фоне отображаются темные знаки.

В ЖКИ на основе ТЭ, работающем на просвет, поляризаторы устанавливают так, чтобы их плоскости поляризации были параллельны друг другу. Индикатор не пропускает свет в отсутствие электрического поля и пропускает при подаче напряжения.

В индикаторах на эффекте Г-Х тонкий слой ЖК - «хозяина» взаимодействует с молекулами «гостя» (красителя). Слой ЖК - хозяина за счет поглощения световой энергии при отсутствии электрического поля приобретает характерную для красителя (гостя) окраску: под воздействием электрического поля он обесцвечивается. Но существуют также вещества гостя и хозяина, в которых окрашивание происходит под воздействием электрического поля. Цветовые различия в индикаторах на эффекте Г-Х хорошо воспринимаются в условиях высокой освещенности даже при небольшом яркостном контрасте. Для повышения механической прочности и влагостойкости ЖКИ используют специальные защитные конструкции .

Индикаторы на эффекте ДР и ТЭ преимущественно применяются там, где экономичность играет решающую роль: в электронных наручных часах, микрокалькуляторах с автономным питанием, портативных многофункциональных измерительных приборах, индикаторах для переносных радиоприемников, магнитофонов, автомобильных индикаторных устройствах и т. п.

В

Рис.5

жидкокристаллических индикаторах, предназначенных для работы в условиях низкой освещенности (менее 35 кд/м 2), применяют подсветку .

Основные параметры ЖКИ :

    Контрастность К и пропускание - это отношение интенсивности света, выходящего из ЖК ячейки в исходном состоянии, к интенсивности света в возбужденном состоянии ЖК ячейки называется пропусканием, если наблюдение ведется в направлении навстречу входящему лучу и контрастностью во всех других случаях.

    Пороговое напряжение U nop и управляющее напряжение U ynp . Эти значения напряжений определяются по коэффициенту рассеяния света в ячейке (К р) . Зависимость коэффициента рассеяния света от напряжения, приложенного к электродам ячейки, показана на Рис.5. Пороговое напряжение U nop соответствует значению Кр=0,05. Управляющее напряжение U упр - значению Кр=0,5. Значение U пор для индикатора, использующего эффект ДР, увеличиваться на низких и высоких частотах (индикатор становится менее эффективным). Индикаторы на основе ТЭ обычно используют на частотах 1...10 кГц. В справочных данных индикаторов указывают рекомендуемую частоту управляющего напряжения.

    Время включения (реакции) Т вкл – это время, в течение которого контрастность достигает 90% установившегося значения.

    Время выключения (релаксации) Т выкл – это время уменьшения контрастности от 90 до 10% установившегося значения.

    Долговечность. В процессе эксплуатации ЖКИ изменяется внешний вид информационных полей, что проявляется как ухудшение и исчезновение контраста между активными и пассивными зонами, увеличивается время реакции. Изменения внешнего вида и времени реакции является следствием электрохимических явлений на границе жидкокристаллического вещества (ЖКВ) - поверхность подложки. Скорость деградационных процессов в основном определяется постоянной составляющей напряжения возбуждения, предельно допустимое значение которого указывается в справочных данных. Наличие постоянной составляющей приводит к электролизу ЖКВ, в результате которого возникает газовыделение в объёме ЖКВ, образуются пузырьки газов, визуально воспринимаемые как чёрные точки. Электроды индикатора (проводящие плёнки) теряют свою прозрачность, и сегменты становятся видимыми в отсутствие напряжения возбуждения. В результате старения нарушается ориентация молекул ЖКВ и растет ток, потребляемый индикатором. Ток также может расти за счет проникновения влаги через слой герметика. Влага разрушает ЖКВ.

При эксплуатации ЖКИ в условиях низкой температуры отдельные компоненты ЖКВ могут кристаллизоваться. Чередование замораживания и размораживания ЖКВ может привести к образованию воздушных пузырьков, которые выглядят как черные точки.

Достоинства ЖКИ:

    малая потребляемая мощность (для ЖКИ на основе твист - эффекта удельная мощность потребления единицы мкВт/см 2);

    низкие рабочие напряжения (1,5...5 В);

    хорошая совместимость с КМОП - микросхемами;

    удобное конструктивное исполнение - плоская форма экрана и ограниченная толщина индикатора (до 0,6 мм);

    возможность эффективной индикации в условиях сильной внешней засветки;

    большая долговечность (около 10-12 лет непрерывной работы).

Основные недостатки:

    сравнительно низкое быстродействие;

    ограниченный угол обзора;

    необходимость внешнего освещения.