Ликвидация бизнеса. Приказы. Оборудование для бизнеса. Бухгалтерия и кадры
Поиск по сайту

История небоскрёбов. Самые головокружительные фотографии со строительства небоскребов нью-йорка

« Технология строительства небоскребов, первый небоскреб »

Первый в мире небоскреб имел всего 10 этажей, и его вряд ли можно было бы разглядеть среди современных городских зданий. Сегодня самые высокие небоскребы имеют более 100 этажей, а их высота превышает 400 метров. Уже много веков назад строители могли сооружать высокие соборы, однако небоскребы, предназначенные для размещения квартир и офисов, появились только в конце 19-ого века. Несмотря на потребность в более высоких жилых зданиях в переполненных центрах больших городов, необходимо было решить две проблемы: разработать безопасные методы высотного строительства и найти способ добираться до верхних этажей без одышки.


(Небоскребы образуют неповторимую линию горизонта на острове Манжэттэн, Нью-Йорк. Этот остров состоит из сплошного гранита, который служит идеальным основанием для части самых высоких в мире зданий.)


Каркасная конструкция

Традиционные здания имели несущие стены, поддерживающие всю конструкцию, и поэтому стены первых этажей высоких зданий должны были быть необычайно толстыми. Со времен был разработан новый метод строительства - т. н. каркасная конструкция. Для поддержки здания использовался стальной каркас, так что даже в небоскребах все стены можно было делать относительно тонкими.

(Свайные копры на площадке под строительство небоскребы. Забитые в землю стальные сваи используют для того, чтобы перенести вес здания на сплошное скальное основание под поверхностным слоем грунта.)

Лифты

Но оставалась другая проблема. Трудно было ожидать, что люди станут пешком подниматься на самый верх высокого здания. Пять этажей в домах с лестницами считались пределом. Идея лифта восходит к Древней Греции. Конструкторские разработки привели к появлению лифтов в зданиях в начале Х I Х в., однако первые образцы были крайне несовершенными. Одни лифты оказались раздражающе медленными, а те, что двигались быстрее - небезопасными: их тросы часто обрывались, что приводило к травмам. Поэтому первые лифты в зданиях устанавливались в основном для транспортирования грузов между этажами. Пассажирские лифты появились в 50-х годах Х I Х в. после того, как американский инженер Элайша Отис изобрел автоматическое предохранительное устройство. Оно предотвращало аварию лифта при разрыве тросов. Чтобы продемонстрировать надежность этого изобретения, Отиса подняли в лифте, после чего тросы разрезали. Вместо того чтобы рухнуть вниз, лифт дернулся путь вниз, лифт дернулся, но остался висеть, застопорившись благодаря предохранительному механизму. Эта демонстрация имела большой успех, и вскоре наряду с созданием каркасных конструкций использование пассажирских лифтов позволило начать строительство высоких зданий. Первым зданием, получившим статус небоскреба, был Хоум-иншуренс-билдинг в Чикаго (США). Это 10-этажное здание со стальным каркасом построили в 1885 г., а уже в 1931 г. снесли: к тому времени то, что раньше считалось умопомрачительно высоким, оказалось совсем небольшим. В том же году в Нью-Йорке был открыт Эмпайр-стейт-билдинг. При высоте в 381 метр (плюс 67-метровая антенна на крыше) это 102-этажное здание на протяжении 40 лет оставалось рекордсменом высоты. Небоскребы строят в Чикаго и Нью Йорке, поскольку цены на землю в этих городах настолько высоки, что выгоднее строить «башни», чем покупать больше земли и получать ту же площадь в более низких и широких зданиях. Долгое время казалось, что Чикаго и Нью-Йорк соревнуются за звание города с самыми высокими зданиями в мире, но теперь в эту гонку вступил Дальний Восток, и первое место занимает Куала-Лумпур- Шанхай.


(Стальной каркас для поддержания конструкции используется для того, чтобы стены не несли всей нагрузки и, следовательно, могли быть выполнены относительно тонкими.)


Ограничения

Высоту зданий ограничивают различные факторы. К примеру, «лес» из небоскребов на Манхэттэне (Нью-Йорк) невозможно устроить в Лондоне из-за различий в свойствах грунта. Остров Манхэттэн представляет собой громадную глыбу твердого гранита, а Лондон стоит на пласте мягкой глины, которая не выдержит зданий с высотой более 60 этажей. Еще одним фактором является ветер. Когда сильный ветер ударяет в небоскреб, на основание здания воздействует значительная сила. Чем выше здание, выступающее выступающее в данном случае рычагом, тем больше эта сила. Она возрастает примерно пропорционально квадратурату высоты, то есть сила ветра, действующая на 100-этажное здание, в 4 раза больше, чем на 50-этажное. Архитекторам приходится проектировать здания, которые могли бы противостоять непогоде: например, ураган может воздействовать на боковую сторону высокого небоскреба с усилием 15000 тонн. По этой причине высокие здания нуждаются в более прочных фундаментах. Необходимость перемещаться с этажа на этаж также ограничивает высоту. Небоскребы обычно вмещают большое количество людей, а долгое ожидание лифта в наш век скоростей неприемлемо. Поэтому в высоких зданиях устанавливают большее количество лифтов.

(Строительство офисов Гонконгско-Шанхайской банковской корпорации. Этот небоскреб имеет стальной наружный каркас, балки которого заполнены водой для предотвращения пожара.)

Колебания

Помимо того, что ветер оказывает на небоскреб значительное боковое воздействие, он может вызывать разрушительные колебания. Это часто происходит в местах, где на уровне земли ветры дуют по узким улицам через просветы между небоскребами. Как и любая другая конструкция, небоскреб обладает собственной частотой колебаний. Это тот уровень, при котором здание начинает колебаться под воз действием, например, ветра. Именно поэтому при сильном ветре некоторые небоскребы раскачиваются настолько сильно, что люди, находящиеся на верхних этажах, ощущают движение пола. В экстремальных случаях такие колебания сильно повреждают здания. К примеру, в 1974 г. из 60-этажного небоскреба Джон-Хэнкок-тауэр в Бостоне (США) выпали и разбились оконные стекла, когда здание стало раскачиваться на ветру. Когда здание изгибалось в одну сторону, оконные рамы на внешней части изгиба растягивались и стекла выпадали. При противоположном наклоне, рамы сжимались, и уцелевшие стекла лопались под давлением. Иногда на крышах небоскребов устанавливают массивные грузы, расположенные так, чтобы действовать в качестве противовесов. Когда здание начинает раскачиваться в одном на правлении, грузы движутся по рельсам, изменяя точку своего воздействия и помогая погасить движение здания, когда оно раскачивается в обратную сторону. Обычно это предотвращает опасное увеличение колебаний. Из-за большой площади, занимаемой зданиями, давление ветра, пробивающегося через промежутки между ними, иногда настолько велико, что валит пешеходов с ног. Такие ветры могут также проникать в высокие здания на уровне земли и подниматься вверх по шахтам лифтов, нанося значительный ущерб. Это одна из причин, почему шахты лифтов во многих небоскребах не проходят по всей высоте здания; вместо этого лифты работают парами: один обслуживает нижние, а второй - верхние этажи.


(Высокому зданию нужен глубокий фундамент.)

Ветрозащитные барьеры

Еще одна мера предосторожности заключается в наличии входных дверей-вертушек. Обычные двери могут позволить сильному ветру проникнуть внутрь, тогда как двери-вертушки обеспечивают практически полню воздухонепроницаемость. Перед началом постройки небоскреба архитекторы производят компьютерное моделирование проекта. Значения прочности материалов и деталей конструкции вводятся в компьютер, который может просчитать, как здание отреагирует на сильный ветер и другие внешние факторы - например, толчки при землетрясении. В случае необходимости проект корректируется с тем, чтобы повысить эксплуатационные качества здания, и проводятся дальнейшие исследования на масштабных моделях. Иногда в ходе этих испытаний обнаруживаются неожиданные проблемы. К примеру, в ходе испытания 1,4-метровой модели высокого здания в аэродинамической трубе, верхушка модели начала опасно колебаться. Измерения показали, что верхние этажи настоящего здания ходили бы из стороны в сторону на расстояние более 20 м в течение одной минуты. К счастью, компьютерное моделирование и аэродинамические испытания обычно устраняют основные недоработки проекта еще до начала строительства. Вдобавок эти тесты помогают современным архитекторам уменьшить степень избыточности или чрезмерной конструкционной прочности здания и, тем самым, уменьшают количество средств, затрачиваемых на стальные конструкции.

(Колебания, вызванные ветром, можно уменьшить путем установки на крыше грузов, движущихся по рельсам асинхронно по отношению к движению самого здания. Это нейтрализует опасные нагрузки, вызванные колебаниями.)

Жизнь наверху

Некоторые небоскребы представляют собой довольно мрачные сооружения, где жителей не покидает ощущение, что настоящая жизнь проходит далеко внизу. Однако хорошо спроектированные небоскребы могут предоставить своим обитателям высокий уровень комфорта. Почти во всех из них есть своя служба безопасности, что помогает уменьшить уровень преступности в этих мини-городах. Некоторые здания также предоставляют настолько широкий спектр услуг, что практически все необходимое находится в двух шагах. Вы можете отправиться на лифте в кинотеатр или библиотеку, за покупками в супермаркет на другом этаже или на тренировку в бассейн или спортзал. Некоторые даже ездят в лифте на работу, поскольку и жилье, и офис находятся в одном здании. Иногда за время поездки в лифте может измениться погода - верхушка небоскреба еще залита солнцем, а ниже уже висят тучи и льет дождь.

(Элегантное здание компании IBM в Париже - приятное отклонение от "блочной" формы многих небоскребов.)

Опасность пожара

Потенциальная опасность очень высокого здания заключается в невозмож ности быстрой эвакуации всех обитателей в случае возникновения пожара. Следовательно, небоскреб должен иметь встроенные системы пожаротушения, готовые немедленно сработать при обнаружении опасной концентрации дыма или высокой температуры. Огромные резервуары с водой размещены в верхней части здания для питания спринклерных систем; датчики, установленные по всему зданию, автоматически включают разбрызгиватели воды, расположенные на потолках. Противопожарная система также может закрывать огнестойкие двери, предотвращающие распространение огня из области возгорания на дру гие части постройки. В случае пожара шахты лифтов могут действовать как мощные дымоходы, вытягивая вверх пламя и дым и распространяющие огонь на другие этажи, поэтому лифты приходится отключать.

(Благодаря своему цвету этот небоскреб в Нью-Йорке меньше выделяется на фоне, чем другие здания.)

Компьютерный контроль

Для управления спринклерными системами и пожарной сигнализацией используются компьютеры. Они же управляют освещением, отоплением и системами безопасности в небоскребах. Здания, устроенные таким образом, называются «умными», поскольку управляют своим собственным функционированием и не требуют повседневного вмешательства людей. Многие небоскребы строятся исключительно под офисы. Это облегчает управление некоторыми службами, поскольку большинство работников приходят и уходят в одно и то же время. Например, можно установить простую систему с заданным временем действия для центрального отопления с тем, чтобы в зимнее время она включалась в рабочие часы и выключалась на всю ночь. Лифты, противопожарные системы, отопление и освещение зависят от наличия электроэнергии. При внезапном ее отключении жителям придется выбираться из здания по темным лестницам. Во избежание подобных ситуаций каждый небоскреб оборудован собственным генератором, который включается при отказе основного питания.

(Крайслер-билдинг в Нью-Йорке занимает сегодня 17-е место в списке самых высоких зданий в мире. Сооружение возведено в 1930 году и имеет 77 этажей (319м.), занятых офисами. Высота Сирс-тауэр в Чикаго 110 этажей.)



См. также:

Ровно 130 лет назад (1 мая 1884 года) было начато строительство самого первого небоскрёба в мире – чикагского 10-этажного здания Страховой компании Home Insurance Building. Существование этого «гиганта» закончилось в 1931 году. Но настоящая история небоскрёбов с этого только началась…

Строго говоря, история возведения домов и до первого официально признанного самого первого небоскрёба в мире знает случаи строительства многоэтажных, в том числе и узких, домов и постройку целых городов из таких зданий, как, например, Шибам в Йемене.

Или, например, итальянских башен Болонью (12 век нашей эры) —

Первый общепризнанный небоскреб (Home Insurance Building) был не очень высоким по нынешним меркам – имел всего лишь 10 этажей согласно первоначальному проекту, общая высота здания составляла 42 метра.

Через несколько лет у этого самого первого небоскрёба в мире появились еще 2 этажа, и тогда высота его была уже 54,9 м. Уильям Ле Барон Дженни, американский архитектор, при проектировании первого небоскреба реализовал новаторскую технологию строительства, заключающийся в использовании несущего каркаса. До него в качестве несущей конструкции использовались внешние стены. Архитектор сделал расчет на основании прочностных характеристик материалов, приняв во внимание удельную прочность стали, которая в 10 раз превышает удельную прочность самого качественного бетона, не говоря уже о каменной или кирпичной кладке. За счет применения металлического каркаса как несущей конструкции удалось уменьшить практически на треть общую массу сооружения. Но создатель проекта все-таки не смог решиться на полный отказ от других несущих конструкций, из-за этого самый первый небоскрёб в мире имел также гранитные колонны и несущая задняя стена.

Реализация перехода на несущий стальной каркас была осуществлена в 1891 году, когда была построена 11-этажная башня Уэйнрайта в Сент-Луисе, автором проекта которой стал Архитектор Луис Салливан. Так что это здание может по праву оспорить звание «самый первый небоскрёб в мире» у чикагского сооружения.

Ни один небоскреб не может функционировать в полной мере без такого архитектурного элемента, как лифт. В истории небоскрёбов самым первым офисным зданием, где стали использовать лифты, стало Эквитабл Лайф Билдинг, построенном в Нью-Йорке в 1870 году.

Первые лифты работали на гидравлическом приводе, что налагало ограничение относительно высоты здания – оно не могло быть выше 20 этажей. Но в 1903 году фирмой Отис была разработана новая конструкция лифта, имеющего электрический привод. В нем нашла применение идея об уравновешивании веса кабины, идущей верх, весом второй кабины, которая двигается вниз. Эти нововведения позволили снять ограничения высоты подъема. Интересным решением для снятия ограничений по высоте здания стало и применение подъема с пересадками.

Самые высокие небоскребы мира. Фото .

Как только появились самые первые небоскребы в мире, в их строительстве началась самая настоящая гонка в возведении самого высокого здания. Самыми напряженными годами в истории небоскрёбов можно считать 20-е годы прошлого века, когда в Нью-Йорке одно за другим взметнулись ввысь несколько высотных зданий, которые претендовали на звание «высочайшего здания мира».

В Нью-Йорке в 1913 году появился 57-этажный небоскреб Вулворт-билдинг, имевший высоту 241 метр и построенный в стиле неоготика, который характеризуется сочетанием новейших достижений науки и традиционной архитектуры. На протяжении 17-ти лет этот небоскреб носил звание самого высокого здания в мире самого высокого небоскреба мира (фото ниже), и до сих пор горожане испытывают к нему особую любовь.

Фото Вулворт-билдинг в 1913 году –

… и сегодня —

Темпы этой гонки заметно замедляются в начале 30-х годов. Это десятилетие можно охарактеризовать возведением двух небоскребов. Первый был простроен в 1930 году на средства Уолтера Перси Крайслера, разместившего в нем офисы своей фирмы. Оно так и называется – Крайслер-билдинг, имеет 77 этажей и высоту по крыше 282 метра, а вместе со шпилем – 320 метров.

Но его обошел Эмпайр-стейт-билдинг, торжественно открытый 1 мая 1931 года. Именно это здание стало мировым символом небоскребостроения практически на полвека.

Оно имеет 102 этажа, высота по крыше составляет 381 метр, а вместе с антенной — 443 метра. Простроенное всего лишь за 13 месяцев, строение не сдавало рекорд высоты до 1972 года.

***

История небоскрёбов в СССР.

В Советском Союзе в 1937 году приступили к постройке самого высокого в мире небоскреба, которое должно быть высотой 495 метров. Однако Великая Отечественная война не позволила закончить этот проект, и после ее окончания к проекту уже не возвращались.

Однако небоскребы в Москве были построены, ими стали знаменитые семь сталинских высоток. Среди них самое высокое здание – это МГУ, имеющее высоту 240 метров. Именно это сооружение вошло во все мировые рейтинги небоскребов. Однако не они были первыми небоскребами, возведенными в Москве.

Еще в начале века, в 1912 году, был возведен Дом дешевых квартир Нирнзее, имеющего высоту 40 метров. На заре история небоскрёбов в СССР в Москве такие сооружения именовали «тучерезами».

Но самым высоким дореволюционным гражданским сооружением было здание Телефонной станции, возведенное в Милютинском переулке в 1908 году и имеющем высоту 78 метров. Технологии, применяемые русскими инженерами, позволяли уже в те времена возводить здания в 100 и даже в 150 метров, но постройка тучерезов ограничивалась как эстетическими, так и религиозными соображениями. Поэтому до середины 50-х годов гордое звание самого высокого здания Москвы носило средневековое сооружение – колокольня Ивана Великого, доминируя над архитектурными сооружениями столицы. Высота колокольни составляет 81 метр.

***

Последняя треть XX века ознаменовалась новой гонкой в строительстве небоскребов. Сложностью определения самых высоких небоскребов мира (фотографии которых мы и рассматриваем в данной статье) стала сложность архитектурных форм. Потому эти звания постоянно оспариваются, исходя из замеров, которые проводятся как по крыше, так и с дополнительными шпилями и антеннами. У считавшейся самой высокой 110-этажной чикагской башни Сирс-Тауэр, носящей ныне имя Уиллис-Тауэр и имеющей высоту 442 метра…

…это звание перехватили в 1998 году башни Петронас, расположенные в Куала-Лумпере и имеющие следующие критерии – 88 этажей, 452 метра высоты.

***

Потом появился в 2004 году небоскреб Тайбэй 101, имеющий 509 метров высоты и насчитывающий 101 этаж. Но и тогда Уиллис-Тауэр спорил за звание самого высокого небоскреба мира (фото ниже), если принимать в расчет находящуюся на крыше здания антенну.

Споры прекратило возведение Дубайской башни Бурдж-Халифа, которая превысила все рекорды. Эта башня имеет высоту по крыше 643 метра, по шпилю 828 метров, а насчитывает 150 этажей.

Фотографии этого рекордсмена просто поражают воображение –

***

В 2013 году Китай заявил о возведении в городе Чанша 220-этажного небоскреба Скай-Сити, имеющего высоту 838 метров. При этом возведением этого здания намеревались побить и еще один рекорд, построив его в рекордно короткие сроки – 90 дней.

Правда, в эти 3 месяца не включались подготовительные работы. Однако дата начала строительства все время переносилась, и теперь торжественное открытие здания планируют в мае 2014 года.

Но и эта высота не является пределом, строители хотят взять высоту более чем в километр. Небоскребы такой высоты заложены в нескольких странах – в Бахрейне – 1022-метровый, 1400-метровый (по шпилю) в Дубае («Аль Бурдж» или «Накхил»)

— 1007-метровая башня в Саудовской Аравии («Kingdom Tower») —

В сотни этажей - это всегда поражающие воображение конструкции, которые выглядят престижно и респектабельно. Как строят небоскребы и зачем это делают? Целесообразность таких решений исходит из стремительного роста населения крупнейших мегаполисов планеты. В то же время разработать проект здания высотой более сотни метров чрезвычайно сложно. Такое строение должно быть не только функциональным, но и безопасным. Вот почему сегодня для реализации подобных проектов прибегают к применению самых инновационных технологий.

В чем заключается технология строительства небоскребов? Какие здания являются самыми высокими на сегодняшний день? Какие инновации в строительстве небоскребов используют в последнее время? На эти и другие вопросы постараемся ответить в нашем материале.

Выбор места под строительство

Как строят небоскребы? Важнейшую роль в реализации проекта играет выбор площадки под размещение конструкций. Высотки гораздо сильнее давят на грунт, чем стандартные жилые здания. Именно по этой причине небоскребы стоят лишь на плотной почве, которая не содержит полостей, неоднородных масс и залежей вод. Здания внушительной высоты содержат массивную, невидимую для глаз обывателя подземную часть. Очевидно, что закладка сложных конструкций фундамента требует тщательного анализа характера почвы.

Стены и несущие конструкции

Современные небоскребы невозможно построить из кирпича или бетонных плит. Подобного рода конструкции неминуемо ожидало бы скорое разрушение в виду нестабильности под воздействием естественных факторов.

Как правило, при сооружении небоскребов прибегают к применению несущих, составных стальных конструкций. В качестве материала для всевозможных перекрытий используют высочайшего уровня прочности.

Планировка

Внутренне устройство небоскребов кардинально отличается от городского жилья. Основной упор здесь делают на соблюдение пожарной безопасности. Ведь эвакуировать людей из здания высотой в десятки этажей при возникновении чрезвычайного происшествия оказывается крайне проблематично. Поэтому внутренне пространство небоскребов разделяют специальные противопожарные преграды. При этом один резервный лифт в здании всегда остается подключенным к бесперебойной подаче электропитания.

Новейшие небоскребы спланированы таким образом, чтобы в чрезвычайных ситуациях люди могли укрыться на технических этажах, которые обычно простаивают пустыми. В то же время все входы в помещения чаще всего оборудуются двойными дверями. Реализуют это в целях предотвращения сквозняков, что снабжают пламя кислородом при возгораниях.

Жизнеобеспечение

Небоскребы, как правило, оборудуются системами, что обеспечивают экономное потребление энергии. Во многих современных зданиях реализованы солнечные батареи. За водоснабжение отвечают продуктивные насосы, которые устанавливаются через каждые 10-15 этажей. Иным путем закачать воду на сотни метров ввысь просто невозможно. Ну и нельзя не отметить системы автономного кондиционирования воздуха.

Стоимость проектов

Сколько стоит строительство небоскреба? Не так давно японские инженеры заявили, что планируют соорудить конструкцию под названием "Фуджи", высота которой достигнет немыслимых 4-х километров. Проект здания предполагает наличие целых 800 этажей. Готовое сооружение должно вместить в себя порядка одного миллиона человек. Для обеспечения здания электроэнергией будут применяться солнечные батареи. Какова же стоимость реализации проекта? По оценкам специалистов строительство "Фуджи" обойдется Японии в сумму от 300 до 900 миллиардов долларов.

Что касается самого высокого дома из ныне существующих, таковым является башня "Бурдж-Халифа" в Объединенных Арабских Эмиратах. Ее высота достигает 828 метров. Стоимость такого небоскреба достигает порядка 20 миллиардов долларов.

Следующий по высоте небоскреб - Шанхайская башня, строительство которой завершилось в 2015 году, обошлась ее создателям всего в 1,7 миллиарда. Высота этого здания составляет 632 метров.

Самый высокий небоскреб в мире

В 2010 году в городе торжественно открыли одно из наиболее впечатляющих зданий в истории. Самый высокий небоскреб в мире (828 метра) получил название «Бурдж-Халифа». Презентация башни представляла собой помпезное событие. Вокруг громадного здания собрались тысячи зевак. Трансляция торжественной церемонии распространялась на весь мир. За действом одновременно наблюдали по телевизору рекордные 2 миллиарда зрителей.

На реализацию проекта ушло целых 5 лет. В ходе работ планы которые отвечали за финансирование, неоднократно менялись. Архитекторам регулярно приходилось вносить поправки в план сооружения, чтобы максимально увеличить его высоту.

Несмотря на все старания шейхов, «Бурдж-Халифа», предположительно, сулит недолго оставаться самым внушительным строением в мире. Ведь не так давно правительство Саудовской Аравии заявило о собственном проекте, который должен затмить своим величием знаменитую башню. По некоторым данным, высота нового гиганта под названием Kingdom Tower составит 1,1 километра.

Небоскребы в Нью-Йорке

Одним из мировых лидеров по количеству небоскребов на единицу площади по сей день остается город Нью-Йорк. Настоящей туристической Меккой является знаменитый «Эмпайр-стейт-билдинг». Располагается небоскреб в финансовом центре города на пересечении Пятой и Тридцать четвертой авеню. Строение занимает целый квартал и возвышается в небеса на 448 метров.

Еще не так давно самым высоким небоскребом Нью-Йорка являлся «Всемирный торговый центр». Монументальное сооружение состояло из двух башен-близнецов, каждая высотой в 541 метр и 110 этажей. Однако в 2011 году состоялась страшная трагедия. Не секрет, что знаменитый небоскреб был уничтожен атакой террористов и навсегда канул в историю.

В 2005 году на карте мегаполиса появился знаменитый Рофеллер-центр. Средства на строительство небоскреба были выделены успешным бизнесменом Джоном Рокфеллером, в честь которого собственно и назвали сооружение. Здание возвышается над Нью-Йорком на 259 метров. На вершине сооружения оборудована смотровая площадка, с которой открывается одна из лучших панорам на город. Примечательно, что обзорная башня на крыше здания, реализованная для туристов, не имеет защитных сеток и решеток. Это позволяет посетителям объекта наслаждаться просто-таки фантастическими видами.

Инновационные технологии

В настоящее время при строительстве небоскребов во всем мире ориентируются на реализацию в проекте возобновляемых источников энергии, применение экологически чистых, безопасных материалов, уменьшение воздействия громадной массы на грунт. Специалисты ориентируются на возможные колебания конструкции, воздействие на нее сейсмических явлений.

Как строят небоскребы? Прежде всего проектировщики прибегают к применению композитных материалов. Как правило, одни и те же схемы повторяются на всех уровнях здания. Использование композитов снижает общий вес зданий, в среднем, на 10%. Технология также дает возможность значительно ускорить реализацию проектов.

Самые передовые технологии сегодня применяются в странах Азии. Здесь особенно озабочены повышенной устойчивостью высотных конструкций, что обусловлено высокой вероятностью вступления в действие факторов природных катаклизмов. Так, небоскреб что располагается в Шанхае, по оценкам специалистов, может сохранять целостность своих конструкций при скорости ветра более 200 км/ч, а также противостоять подземным толчкам мощностью до 7 баллов. Обеспечивается это благодаря реализации подвижных соединений внутри несущих колонн из стали. Огромное влияние на поддержание стабильности конструкции оказывает наличие плавательного бассейна, расположенного на 57 этаже небоскреба. Последний дает возможность зданию балансировать в пространстве.

Не на самом последнем месте при строительстве высотных зданий остается повышенная забота об окружающей среде. Современные небоскребы все чаще играют роль воздушных фильтров, которые убирают из воздушного пространства парниковые газы, прочие вредные вещества. Ярким примером является здание Bank of America, расположенное на острове Манхэттене. Системы, размещенные в стенах конструкции сооружения способны отфильтровывать загрязненный воздух и отдавать его обратно в пространство уже в очищенном виде.

Самое в мире - «Бурдж-Халифа» концентрирует в себе конденсат, который затем уходит в виде жидкости на орошение прилегающих зеленых насаждений. Помимо прочего, при сооружении небоскреба применялись особые марки бетона, которые выдерживают воздействие высоких температур, что превышают 50 о С.

В заключение

Вот мы и выяснили, как строят небоскребы. Еще не так давно некоторые из вышеуказанных проектов казались чем-то футуристическим и недостижимым в ближайшей перспективе. Как видно, развитие технологий не стоит на месте. Инновационные решения незаметно становятся частью нашей повседневной жизни и все чаще воспринимаются как должное.

В 1884 году в Чикаго было начато строительство первого небоскреба. В нем было аж целых 10 этажей! Однако уже в начале следующего века 10-этажным домом было никого не удивить, а главное строительство небоскребов в Америке переместилось в Нью-Йорк.

Многие видели фотографию сидящих на балке строителей где-то высоко в небе над городом, она часто встречается на постерах и обложках. И конечно, с замиранием сердца задавались вопросом: как? Как они туда попали и как они могут не дрожать от страха, а преспокойно есть свой ланч? Итак, этот пост о том, как строились небоскребы в Нью-Йорке.

Lunchtime atop a Skyscraper («Обед на вершине небоскреба») - фотография из серии Construction Workers Lunching on a Crossbeam - 1932 фотографа Charles C. Ebbets.

Такое чудо, как небоскреб, не стало бы возможным без изобретения стального каркаса. Сборка стального каркаса здания - самая опасная и сложная часть строительства. Именно качество и скорость сборки каркаса определяет, будет ли проект реализован в срок и в рамках бюджета. Вот поэтому клепальщики - самая важная профессия при строительстве небоскреба.

Клепальщики - это каста со своими законами: зарплата клепальщика за рабочий день - 15 долларов, больше, чем у любого квалифицированного рабочего на стройке; они не выходят на работу в дождь, ветер или туман, они не числятся в штате подрядчика. Они не одиночки, они работают бригадами из четырех человек, и стоит одному из бригады не выйти на работу, не выходит никто. Почему же в разгар Великой депрессии на это смотрят сквозь пальцы все, от инвестора до прораба?

На помосте из досок или просто на стальных балках стоит угольная печь. В печи заклепки - 10-сантиметровые в длину и 3-сантиметровые в диаметре стальные цилиндры. «Повар» «варит» заклепки - небольшими мехами гонит в печь воздух, чтобы разогреть их до нужной температуры. Заклепка прогрелась (не слишком сильно - провернется в отверстии и придется ее высверливать - и не слишком слабо - не расклепается), теперь нужно передать заклепку туда, где она будет скреплять балки. Какая балка когда будет крепиться, известно лишь предварительно, да и передвигать горячую печь в течение рабочего дня нельзя. Поэтому часто место крепления находится от «повара» метрах в тридцати, иногда выше, иногда ниже на два-три этажа. Передать заклепку можно единственным способом - бросить.

«Повар» поворачивается к «вратарю» и молча, убедившись, что «вратарь» готов к приему, щипцами бросает раскаленную докрасна 600-граммовую болванку в его сторону. Иногда на траектории уже сваренные балки, кинуть нужно один раз, точно и сильно.

«Вратарь» стоит на узком помосте или просто на голой балке рядом с местом клепки. Его цель - поймать летящую железку обычной жестяной консервной банкой. Он не двигается с места, чтобы не упасть. Но поймать заклепку он обязан, иначе она маленькой бомбой рухнет на город.

«Стрелок» и «упор» ждут. «Вратарь», поймав заклепку, загоняет ее в отверстие. «Упор» с внешней стороны здания, вися над пропастью, стальным стержнем и собственным весом удерживает шляпку заклепки. «Стрелок» 15-килограммовым пневматическим молотом в течение минуты расклепывает ее с другой стороны.

Лучшая бригада проделывает это фокус свыше 500 раз за день, средняя - около 250.

Опасность этой работы можно проиллюстрировать следующим фактом: каменщики на стройке страхуются по ставке 6% от зарплаты, плотники - 4%. Ставка клепальщика - 25-30%.

На здании Крайслера погиб один человек. На Wall-Street-40 погибло четверо. На Empire State - пятеро.

Каркас небоскреба состоит из сотен стальных профилей длиной несколько метров и массой в несколько тонн, так называемых beams. Хранить их при строительстве небоскреба негде - никто не позволит организовать склад в центре города, в условиях плотной застройки, на муниципальной земле.

Более того, все элементы конструкции разные, каждый может быть использован в одном-единственном месте, поэтому попытка организации даже временного склада, например на одном из последних построенных этажей, может привести к большой путанице и срыве сроков строительства.

Именно поэтому, когда я писал, что работа клепальщиков самая важная и самая сложная, я не упоминал, что она к тому же самая опасная и тяжелая. Работа тяжелее и опасней, чем у них - работа крановой бригады. Заказ на бимсы был согласован с металлургами еще несколько недель назад, грузовики подвозят их к месту строительства минута в минуту. Независимо от погоды, их необходимо разгрузить немедленно.

Деррик-кран - стрела на шарнире, находится на последнем построенном этаже, монтажники - этажом выше. Оператор лебедки может находиться на любом этаже уже построенного здания, ведь никто не собирается останавливать подъем и отвлекать другие краны для поднятия тяжелого механизма на несколько этажей повыше для удобства монтажников. Поэтому, поднимая многотонный швеллер, оператор не видит ни саму балку, ни машину, которая ее привезла, ни своих товарищей.

Единственный ориентир для управления - удар колокола, подаваемый подмастерьем по сигналу бригадира, находящегося вместе со всей бригадой десятками этажей выше. Удар - включает мотор лебедки, удар - выключает. Рядом работают несколько бригад клепальщиков со своими молотами (вы слышали когда-нибудь шум отбойного молотка?), другие крановщики поднимают по командам своих колоколов другие швеллеры. Ошибиться и не услышать удар нельзя - швеллер или протаранит стрелу крана, или сбросит с установленной вертикальной балки монтажников, готовящихся его закрепить.

Бригадир, управляя дерриком через двух операторов, одного из которых он не видит, добивается совпадения отверстий под клепку на установленных вертикальных балках с отверстиями на поднимаемом швеллере с точностью до 2-3 миллиметров. Только после этого пара монтажников может закрепить раскачивающийся, часто мокрый швеллер огромными болтами и гайками.

В на 6-й авеню есть памятник этим ребятам, установлен в 2001 году. Моделью стала самая известная фотка, она здесь в превью первая. Так вот, сделали памятник сначала точно так, как на фото, т.е. 11 чуваков сидят на балке. А потом самого крайнего справа убрали под корень. И только из-за того, что у него в руках бутылка виски! Я понимаю, если б это сделали у нас во времена Горбачева, но у них в 2001-м! Видимо, не хотели разрушать легенду про бравых парней. Теперь это десять вполне приличных ребят, сидящих на стальной балке. Нормально. Но как-то обидно.

Памятники отважным строителям

Скоро выйдет громадная церковь на дереве, теперь небоскрёбы… Но ничего, главное, что это интересно 🙂

Как построить небоскрёб? На самом деле принцип очень прост: организовать фундамент, который способен выдержать миллионны тонн небоскрёба, построить каркас из стальных балок, ну а потом всё вообще элементарно — заполнить промежутки изоляционным и защитным материалом. Ну там окна вставить, двери…

И начнём мы строительство небоскрёба с фундамента. Фундамент — это несущая конструкция, часть здания, которая воспринимает все нагрузки от вышележащих конструкций и передает его на основание. В случае с небоскрёбами основание должно быть как можно более устойчивым. Желательно, чтобы оно было скальным, и в этом случае с фундаментом никаких проблем не возникает. Но что делать, если до скального основания ещё копать и копать? Или же скалы в месте установки небоскрёба вообще не предполагается? Здесь может помочь опыт стоительства высотных зданий в Москве и Нью-Йорке.

Многие считают, что Нью-Йорк стоит на скале. Утверждение по сути верное, но — остров Манхэттен в верхней своей части состоит из морских наносных пород, толщина которых колеблется от 15 до 40 метров, и только под ними уже находится скальное основание, способное удержать вес небоскреба.

Первые высотки пытались строить на деревянных сваях. Но мало того, что сваи гнили, мест, в которых сваи могли достигнуть скалы и передать на нее нагрузку было достаточно мало, да и находились эти места не всегда там, где дом окупился бы. Сплошные, несоставные стальные сваи большой длины не умели еще изготовлять, а скреплять их в продольном направлении не умели. Вычёрпывание всей песчаной массы в основании здания, даже с огораживанием котлована по периметру в условиях плотной застройки невозможно - любая протечка может привести к обрушению соседних зданий.

Проблема была решена достаточно просто, изящно, и с некоторыми дополнениями работает в сложных условиях до сих пор. Её решение предложил инженер-мостовик Чарльз Сойсмит. Например, сейчас так делают колодцы на дачах 🙂

Основной компонент сваеобразующего комплекса — это опускной колодец из бетонных колец. Внутри - или пара рабочих с отбойными молотками, или небольшой экскаватор. Порода вынимается с дна колодца деррик-краном (простейший кран, стрела на шарнире), а колодец под собственным весом, а также под весом специальных грузов, расположенных на его верхней части опускается, сверху надстраивается еще одно бетонное кольцо — и так, пока этот «вертикальный тоннель» не упрется в требуемое скальное основание. Затем экскаватор (и рабочие) извлекаются, и труба заполняется бетоном. Десяток подобных труб способны удержать небоскреб.

На рисунке вид в один из таких бетонных колодцев. Глубина около 30 метров, диаметр около 3 метров.

В местах с глинистыми грунтами (таких как в Чикаго или в Москва)проблемы устройства фундамента решаются гораздо проще. Поскольку глина - более плотный, чем песок, материал, то в этом случае фундаментом может служить монолитная бетонная плита, «плавающая» в грунте.

Итак, фундамент мы возвели. Теперь можно браться за создание каркаса из стальных балок — бимсов. Порядок возведения каркаса очень прост:

  1. Кран подаёт балку
  2. Специалист по временному креплению балки временно крепит балку
  3. Специалисты по клепанию постоянных заклёпок клепают постоянные заклёпки.

Цикл повторяется столько раз, сколько нужно для возведения каркаса. Как видите, всё проще некуда.

Но если всмотреться вглубь, то выплывет немало нюансов. Особенно если мы всмотримся не в современность (где всё примерно так, как описано в последовательности), а в тридцатые годы, в Нью-Йорк, когда возводились самые знаменитые небоскрёбы этого города:

  • здание Крайслера
  • Wall-Street-40
  • Empire State Building
  • и другие

Соответственно, вашему вниманию предлагаем небольшой, но поучительный рассказ о том, как возводился каркас небоскрёба в тридцатые годы прошлого века. И начнём наш рассказ со специалистов по временной фиксации балок и поговорим про работу крановой бригады.

Каркас небоскреба состоит из сотен стальных профилей длиной несколько метров и массой в несколько тонн, так называемых beams. Хранить их при строительстве небоскреба негде - никто не позволит организовать склад в центре города, в условиях плотной застройки, на муниципальной земле. Более того, все элементы конструкции разные, каждый может быть использован в одном единственном месте, поэтому попытка организации даже временного склада, например, на одном из последних построенных этажей может привести к большой путанице и срыве сроков строительства. Заказ на бимсы согласовывается с металлургами за несколько недель, грузовики подвозят их к месту строительства минута в минуту, независимо от погоды их необходимо разгрузить немедленно.

Разгруженные балки тут же поднимают к месту установки с помощью деррик-крана (уже упоминавшийся выше простейший кран — стрела с противовесом). Этот кран установлен на самом верху, на последнем завершённом этаже. Выше — только недостроенный верхний этаж, куда, собственно, и будет подаваться балка. Соответственно, оператор крана после определённого этажа просто не видит, что он поднимает — и куда он поднимает.

Единственный ориентир для управления краном - удар колокола, подаваемый подмастерьем по сигналу бригадира. Удар - включает мотор лебедки, удар — выключает. Рядом работают несколько бригад клепальщиков (о них — далее) со своими отбойными молотами, другие крановщики поднимают по командам своих колоколов другие бимсы. Соответственно, шум стоит адский, но ошибиться и не услышать удар нельзя - иначе бимса или протаранит стрелу крана, или сбросит с установленной вертикальной балки монтажников, готовящихся его закрепить и так далее.

Бригадир, управляя дерриком через двух операторов, одного из которых он не видит, добивается совпадения отверстий под клепку на установленных вертикальных балках с отверстиями на поднимаемом швеллере с точностью до 2-3 миллиметров. Только после этого пара монтажников может временно закрепить раскачивающийся, часто мокрый бимс огромными болтами и гайками.

Естественно, для этого монтажникам нужно залезть очень и очень высоко. Что очень и очень опасно. Плюс крановщик не видит, куда он балку суёт… Вот так:

Но всё когда-то заканчивается, и монтажники идут верменно крепить другие бимсы, а к работе над уже закреплёнными балками начинают работать специалисты по клепанию заклёпок, задача которых — создать надёжное соединение балки с балкой. Которое не разрушится и не сорвётся. Вот поэтому клепальщики — самая важная профессия при строительстве небоскреба.

Клепальщики — это каста со своими законами: зарплата клепальщика за рабочий день 15$, больше любого квалифицированного рабочего на стройке; они не выходят на работу в дождь, ветер или туман, они не числятся в штате подрядчика. Они не одиночки, они работают бригадами из четырех человек, и стоит одному из бригады не выйти на работу, не выходит никто. Почему же в разгар Великой депрессии на это смотрят сквозь пальцы все, от инвестора до прораба?

Всё дело в процедуре клёпки. И в том, что заклёпки нужно загонять в предназначенные для них отверстия горячими. Нагревание делает металл более пластичным — и его можно расклепать, то есть расширить высовывающуюся из отверстия часть металлического штыря так, чтобы она стала широкой и не выпадала. А заодно держала балку. С другой стороны, металл при нагревании расширяется, и если нагреть заклёпку слишком сильно… В общем, читаем как это происходило на практике:

На помосте из досок, или просто на стальных балках стоит угольная печь. В печи заклепки — десятисантиметровые в длину и трёхсантиметровые в диаметре стальные цилиндры. Один из бригады клепальщиков, "Повар", "варит" заклепки — небольшими мехами гонит в печь воздух, чтобы разогреть их до нужной температуры.

Когда заклепка прогрелась (не слишком сильно — не влезет в отверстие и придется его высверливать; и не слишком слабо — не расклепается), нужно передать заклепку туда, где она будет скреплять балки. Какая балка когда будет крепиться известно лишь предварительно, да и передвигать горячую печь в течение рабочего дня нельзя. Поэтому часто место крепления балки, куда нужно доставить всё ещё горячую заклёпку, находится от "повара" метрах в тридцати, иногда выше, иногда ниже на 2-3 этажа. Следовательно, остаётся единственный вариант.

Передать заклепку можно единственным способом — бросить. Это происходило следующим образом: "повар" поворачивается к "вратарю" и молча, убедившись, что вратарь готов к приему, щипцами бросает раскаленную докрасна шестисотграммовую болванку в его сторону. Иногда на траектории есть уже сваренные балки или другие рабочие, поэтому кинуть нужно только один раз, точно и сильно.

"Вратарь" — второй член бригады клепальщиков — стоит на узком помосте или просто на голой балке рядом с местом клепки. Его цель — поймать летящую железку обычной жестяной консервной банкой. Он не может двинуться с места, чтобы не упасть. Но поймать заклепку он обязан, иначе она маленькой бомбой рухнет на город.

Далее в дело вступают ещё два члена бригады клепальщиков — "стрелок" и "упор". Они ждут, пока горячая заклёпка не окажется у "вратаря". Далее "вратарь", поймав заклепку, загоняет ее в отверстие. "Упор" с внешней стороны здания, вися над пропастью, стальным стержнем и собственным весом удерживает шляпку заклепки. "Стрелок" 15-килограммовым пневматическим молотом в течение минуты расклепывает ее с другой стороны.

Лучшая бригада проделывает это фокус свыше 500 раз за день, средняя — около 250.

Итак, фундамент у нас есть, каркас тоже — теперь дело за заполнением каркаса. Но это и сейчас просто, и раньше с этим особо не заморачивались:

Страховка, наружу и вперёд, делать дело на благо общества.

Итак, теперь вы в общих чертах знаете, как построить небоскрёб. Остались лишь желание и детали 🙂