Ликвидация бизнеса. Приказы. Оборудование для бизнеса. Бухгалтерия и кадры
Поиск по сайту

Количество грозовых часов в году по регионам. Громоотводы для деревьев. Рис.2.5.3. Карта районирования территории РФ по среднегодовой продолжительности гроз в часах

Формально расчет предельно прост. Нужно знать площадь стягивания молний в здание S ст и их удельную плотность n M в месте его расположения. Произведение этих величин дает среднее ожидаемое число прямых ударов молнии в год:

N M = n M S ст (1)

В подавляющем большинстве практических ситуаций N M T мол ≈ 1/N M (2)

Во всех справочных материалах величина n M дается на 1 км 2 в год. Поэтому расчетное значение T мол оценивается в годах. Если, например, получено N M = 0,03, значит нужно в среднем ожидать один удар молнии за 1: 0,03 ≈ 33 года эксплуатации.

Понятие “в среднем” имеет здесь определяющее значение. Удар молнии в конкретное здание не обязательно произойдет через 33 года, До этого печального события, если не повезет, может пройти всего 1 - 2 года, а возможно и 100 лет (для особо везучих). Оцененный срок действительно средний . Он может быть подтвержден только многолетней статистикой наблюдений за большим числом однотипных зданий.

Таблица 1 заимствована из нормативного документа РД 34.21.122-87.

Таблица 1

Чтобы найти величину n M , нужно сначала обратиться к карте продолжительности гроз (она тоже есть в нормативе), снять с нее среднегодовую продолжительность гроз для места расположения рассматриваемого здания и потом по таблице 1 получить искомое n M . Надо ли говорить, насколько приблизительным будет результат расчета. Хотелось бы оперировать более строгими цифрами, полученными, например, системой дистанционной регистрации интенсивности грозовой деятельности с пространственным разрешением хотя бы 200 - 500 м. К сожалению, в отличие от многих технически развитых стран, на территории России такая система пока еще не развернута.

Понятно, что в сложившейся ситуации бессмысленно тратить большие усилия на строгое вычисление площади стягивания. По опыту наблюдений за сооружениями разной высоты принято, что она ограничивается линией, удаленной от внешнего периметра объекта на расстояние, равного 3-м его высотам. Построение легко выполнить. Потом остается вычислить ограниченную площадь (внутри синей линии на рис. 1) любым методом, в крайнем случае, - по клеточкам на миллиметровке. При большой неопределенности значения nM погрешность вычисления площади вряд ли будет сколько-нибудь значима.

Рисунок 1

Часто элементы здания имеют разную высоту. В этом случае радиус стягивания можно оценить по высоте наиболее высокого элемента. Результат ожидаемого числа ударов даст тогда оценку сверху. Для уточнения расчета нужно построить площади для всех различных по высоте строительных фрагментов и провести их общую внешнюю границу, как это показано на рис. 2. Ограниченная ею территория даст уточненную площадь стягивания для здания в целом.

Рисунок 2

Выполненные построения справедливы только для уединенного здания. Соседние строения или высокие деревья могут сильно изменить результат. Представьте себе район городской застройки или садовый кооператив, где дома стоят едва ли не вплотную. Их зоны стягивания молний частично накладываются друг на друга. В итоге ожидаемое число ударов в каждый из домов будет меньше. При сопоставимой высоте соседних зданий можно считать, что из наложенных друг на друга участков зон стягивания молнии распределятся поровну между домами. Если же высоты принципиально различны, а их зоны стягивания перекрываются значительной долей, приходится прибегать к компьютерному расчету. Так же нужно поступать и в случае, когда заказчик требует большой точности.

На практике необходимость уточненных расчетов возникает редко. Оценка числа ударов молнии для уединенно расположенного здания всегда можно рассматривать как предельную, а ошибка даже на уровне значащей цифры вполне допустима из-за грубой оценки плотности грозовых разрядов на территории России.

При расчете ВЛ и их элементов должны учитываться климатические условия - ветровое давление, толщина стенки гололеда, температура воздуха, степень агрессивного воздействия окружающей среды, интенсивность грозовой деятельности, пляска проводов и тросов, вибрация.

Определение расчетных условий по ветру и гололеду должно производиться на основании соответствующих карт климатического районирования территории РФ (рис.2.5.1, 2.5.2 - см. цветную вклейку) с уточнением при необходимости их параметров в сторону увеличения или уменьшения по региональным картам и материалам многолетних наблюдений гидрометеорологических станций и метеопостов за скоростью ветра, массой, размерами и видом гололедно-изморозевых отложений. В малоизученных районах* для этой цели могут организовываться специальные обследования и наблюдения.

* К малоизученным районам относятся горная местность и районы, где на 100 км трассы ВЛ для характеристики климатических условий имеется только одна репрезентативная метеорологическая станция.

Рис.2.5.1. Карта районирования территории РФ по ветровому давлению

Рис.2.5.2. Карта районирования территории РФ по тощине стенки гололеда

При отсутствии региональных карт значения климатических параметров уточняются путем обработки соответствующих данных многолетних наблюдений согласно методическим указаниям (МУ) по расчету климатических нагрузок на ВЛ и построению региональных карт с повторяемостью 1 раз в 25 лет.

Основой для районирования по ветровому давлению служат значения максимальных скоростей ветра с 10-минутным интервалом осреднения скоростей на высоте 10 м с повторяемостью 1 раз в 25 лет. Районирование по гололеду производится по максимальной толщине стенки отложения гололеда цилиндрической формы при плотности 0,9 г/см на проводе диаметром 10 мм, расположенном на высоте 10 м над поверхностью земли, повторяемостью 1 раз в 25 лет.

Температура воздуха определяется на основании данных метеорологических станций с учетом положений строительных норм и правил и указаний настоящих Правил.

Интенсивность грозовой деятельности должна определяться по картам районирования территории РФ по числу грозовых часов в году (рис.2.5.3 - см. цветную вклейку), региональным картам с уточнением при необходимости по данным метеостанций о среднегодовой продолжительности гроз.

Рис.2.5.3. Карта районирования территории РФ по среднегодовой продолжительности гроз в часах

Степень агрессивного воздействия окружающей среды определяется с учетом положений СНиПов и государственных стандартов, содержащих требования к применению элементов ВЛ, гл.1.9 и указаний настоящей главы.

Определение районов по частоте повторяемости и интенсивности пляски проводов и тросов должно производиться по карте районирования территории РФ (рис.2.5.4 - см. цветную вклейку) с уточнением по данным эксплуатации.

Рис.2.5.4. Карта районирования территории РФ по пляске проводов

По частоте повторяемости и интенсивности пляски проводов и тросов территория РФ делится на районы с умеренной пляской проводов (частота повторяемости пляски 1 раз в 5 лет и менее) и с частой и интенсивной пляской проводов (частота повторяемости более 1 раза в 5 лет).

2.5.39

При определении климатических условий должно быть учтено влияние на интенсивность гололедообразования и на скорость ветра особенностей микрорельефа местности (небольшие холмы и котловины, высокие насыпи, овраги, балки и т.п.), а в горных районах - особенностей микро- и мезорельефа местности (гребни, склоны, платообразные участки, днища долин, межгорные долины и т.п.).

2.5.40

Значения максимальных ветровых давлений и толщин стенок гололеда для ВЛ определяются на высоте 10 м над поверхностью земли с повторяемостью 1 раз в 25 лет (нормативные значения).

2.5.41

Нормативное ветровое давление , соответствующее 10-минутному интервалу осреднения скорости ветра (), на высоте 10 м над поверхностью земли принимается по табл.2.5.1 в соответствии с картой районирования территории России по ветровому давлению (рис.2.5.1) или по региональным картам районирования.

Таблица 2.5.1Нормативное ветровое давление на высоте 10 м над поверхностью земли

Полученное при обработке метеоданных нормативное ветровое давление следует округлять до ближайшего большего значения, приведенного в табл.2.5.1.

Ветровое давление определяется по формуле, Па

Ветровое давление более 1500 Па должно округляться до ближайшего большего значения, кратного 250 Па.

Для ВЛ 110-750 кВ нормативное ветровое давление должно приниматься не менее 500 Па.

Для ВЛ, сооружаемых в труднодоступных местностях, ветровое давление рекомендуется принимать соответствующим району на один выше, чем принято для данного региона по региональным картам районирования или на основании обработки материалов многолетних наблюдений.

2.5.42

Для участков ВЛ, сооружаемых в условиях, способствующих резкому увеличению скоростей ветра (высокий берег большой реки, резко выделяющаяся над окружающей местностью возвышенность, гребневые зоны хребтов, межгорные долины, открытые для сильных ветров, прибрежная полоса морей и океанов, больших озер и водохранилищ в пределах 3-5 км), при отсутствии данных наблюдений нормативное ветровое давление следует увеличивать на 40% по сравнению с принятым для данного района. Полученные значения следует округлять до ближайшего значения, указанного в табл.2.5.1.

2.5.43

Нормативное ветровое давление при гололеде с повторяемостью 1 раз в 25 лет определяется по формуле 2.5.41, по скорости ветра при гололеде .

Скорость ветра принимается по региональному районированию ветровых нагрузок при гололеде или определяется по данным наблюдений согласно методическим указаниям по расчету климатических нагрузок. При отсутствии региональных карт и данных наблюдений . Для ВЛ до 20 кВ нормативное ветровое давление при гололеде должно приниматься не менее 200 Па, для ВЛ 330-750 кВ - не менее 160 Па.

Нормативные ветровые давления (скорости ветра) при гололеде округляются до ближайших следующих значений, Па (м/с): 80 (11), 120 (14), 160 (16), 200 (18), 240 (20), 280 (21), 320 (23), 360 (24).

Значения более 360 Па должны округляться до ближайшего значения, кратного 40 Па.

2.5.44

Ветровое давление на провода ВЛ определяется по высоте расположения приведенного центра тяжести всех проводов, на тросы - по высоте расположения центра тяжести тросов, на конструкции опор ВЛ - по высоте расположения средних точек зон, отсчитываемых от отметки поверхности земли в месте установки опоры. Высота каждой зоны должна быть не более 10 м.

Для различных высот расположения центра тяжести проводов, тросов, а также средних точек зон конструкции опор ВЛ ветровое давление определяется умножением его значения на коэффициент , принимаемый по табл.2.5.2.

Таблица 2.5.2 Изменение коэффициента по высоте в зависимости от типа местности

Высота расположения приведенного центра тяжести проводов, тросов и средних точек зон конструкций опор ВЛ над поверхностью земли, м

Коэффициент для типов местности

А В С
До 15 1,00 0,65 0,40
20 1,25 0,85 0,55
40 1,50 1,10 0,80
60 1,70 1,30 1,00
80 1,85 1,45 1,15
100 2,00 1,60 1,25
150 2,25 1,90 1,55
200 2,45 2,10 1,80
250 2,65 2,30 2,00
300 2,75 2,50 2,20
350 и выше 2,75 2,75 2,35

Примечание. Типы местности соответствуют определениям, приведенным в 2.5.6.

Полученные значения ветрового давления должны быть округлены до целого числа.

Для промежуточных высот значения коэффициентов определяются линейной интерполяцией.

Высота расположения приведенного центра тяжести проводов или тросов для габаритного пролета определяется по формуле, м

,

где - среднеарифметическое значение высоты крепления проводов к изоляторам или среднеарифметическое значение высоты крепления тросов к опоре, отсчитываемое от отметок земли в местах установки опор, м;

Стрела провеса провода или троса в середине пролета при высшей температуре, м.

2.5.45

При расчете проводов и тросов ветер следует принимать направленным под углом 90° к оси ВЛ.

При расчете опор ветер следует принимать направленным под углом 0°, 45° и 90° к оси ВЛ, при этом для угловых опор за ось ВЛ принимается направление биссектрисы внешнего угла поворота, образованного смежными участками линии.

Правила устройства электроустановок (ПУЭ). Глава 2.5. Воздушные линии электропередачи напряжением выше 1 кВ (Начало)
Правила устройства электроустановок (ПУЭ). Глава 2.5. Воздушные линии электропередачи напряжением выше 1 кВ (Окончание)

ИЗОЛЯЦИЯ

ИЗОЛЯЦИЯ

2.5.57. На ВЛ 110 кВ и выше должны применяться только подвесные изоляторы; на ВЛ 35 кВ и ниже могут применяться подвесные и штыревые (в том числе опорно-стержневые) изоляторы.

2.5.58. Количество подвесных и тип штыревых изоляторов для ВЛ напряжением 6 кВ и выше выбираются из условия обеспечения надежной работы их в соответствии с "Инструкцией по проектированию изоляции в районах с чистой и загрязненной атмосферой".

Таблица 2.5.15. Минимальное мокроразрядное напряжение штыревых изоляторов

Номинальное напряжение ВЛ, кВ

Действующее мокроразрядное напряжение, кВ

Таблица 2.5.16. Расчетное коммутационное перенапряжение, принимаемое при выборе изоляции ВЛ

Номинальное напряжение ВЛ, кВ

Расчетная кратность коммутационных перенапряжений

Наиб. раб

Коммутационные перенапряжения, кВ

2.5.59. При применении подвесных изоляторов с отношением длины пути утечки к строительной высоте более 2,3 гирлянда, выбранная по рабочему напряжению, проверяется по условию воздействия коммутационных перенапряжений, расчетные значения которых приведены в табл. 2.5.17.

2.5.60. На переходных опорах высотой более 40 м количество подвесных изоляторов в гирлянде следует увеличивать по сравнению с принятыми на остальных опорах этой ВЛ на один изолятор на каждые 10 м высоты опоры сверх 40 м.

2.5.61. Коэффициенты запаса прочности изоляторов, т. е. отношение механической нагрузки, разрушающей штыревые и опорно-стержневые изоляторы, или электромеханической разрушающей нагрузки подвесных изоляторов к наибольшей нормативной нагрузке, действующей на изоляторы, должны составлять: при работе ВЛ в нормальном режиме - не менее 2,7; при среднегодовой температуре, отсутствии гололеда и ветра - не менее 5,0; в аварийном режиме для подвесных изоляторов ВЛ 500 кВ - не менее 2,0, а напряжением 330 кВ и ниже - не менее 1,8.

Нагрузки, действующие на изоляторы в аварийном режиме, определяются в соответствии с 2.5.89-2.5.91 и 2.5.93.

Таблица 2.5.17. Количество изоляторов в поддерживающих гирляндах ВЛ 110-500 кВ с металлическими и железобетонными опорами

Тип изолятора

Количество изоляторов, шт., при номинальном напряжении ВЛ, кВ

ПФ6-А (П-4,5)

ПФ6-Б (ПМ-4,5)

ПФ6-В (ПФЕ-4,5)

ПФ6-В (со Знаком качества)

ПФ20-А(ПФЕ-16)

ПС6-А (ПС-4,5)

ПС-11 (ПС-8,5)

ПС16-А(ЛС-16)

ПС16-Б (со Знаком качества)

ПС30-А (ЛС-30)

ЗАЩИТА ОТ ПЕРЕНАПРЯЖЕНИЙ, ЗАЗЕМЛЕНИЕ

2.5.62. ВЛ 110-500 кВ с металлическими и железобетонными опорами должны быть защищены от прямых ударов молнии тросами по всей длине линии.

Сооружение ВЛ 110-500 кВ без тросов допускается:

1) в районах с числом грозовых часов в году менее 20;

2) на отдельных участках ВЛ в районах с плохо проводящими грунтами ( Ом·м);

3) на участках трассы с расчетной толщиной стенки гололеда более 20 мм.

Усиления изоляции для случаев, приведенных в п. 1-3, не требуется.

При отсутствии данных о среднегодовой продолжительности гроз можно пользоваться картой районирования территории СССР по числу грозовых часов в году (рис. 2.5.13-2.5.15).

Рис. 2.5.13. Карта среднегодовой продолжительности гроз. Лист 1

Рис. 2.5.13. Карта среднегодовой продолжительности гроз. Лист 1

Рис. 2.5.14. Карта среднегодовой продолжительности гроз. Лист 2

Рис. 2.5.14. Карта среднегодовой продолжительности гроз. Лист 2

Рис. 2.5.15. Карта среднегодовой продолжительности гроз. Лист 3

Рис. 2.5.15. Карта среднегодовой продолжительности гроз. Лист 3

Рис. 2.5.16. Карта среднегодовой продолжительности гроз. Лист 4

Рис. 2.5.16. Карта среднегодовой продолжительности гроз. Лист 4

Защита подходов ВЛ к подстанциям должна выполняться в соответствии с требованиями гл. 4.2.

2.5.63. Для ВЛ до 35 кВ применения грозозащитных тросов не требуется. ВЛ 110 кВ на деревянных опорах, как правило, не должны защищаться тросами.

2.5.64. Единичные металлические и железобетонные опоры и другие места с ослабленной изоляцией на ВЛ 35 кВ с деревянными опорами должны защищаться трубчатыми разрядниками или, при наличии АПВ, защитными промежутками, а на ВЛ 110-220 кВ - трубчатыми разрядниками. При отсутствии трубчатых разрядников 110-220 кВ необходимых параметров допускается устанавливать вместо них защитные промежутки.

2.5.65. При выполнении защиты ВЛ от грозовых перенапряжений тросами необходимо руководствоваться следующим:

1. Одностоечные металлические и железобетонные опоры с одним тросом должны иметь угол защиты не более 30°, а с двумя тросами для целей грозозащиты - не более 20°.

2. На металлических опорах с горизонтальным расположением проводов и с двумя тросами угол защиты по отношению к внешним проводам должен быть не более 20°; в III, IV и особом районах по гололеду, а также в районах с частой пляской проводов допускается угол защиты до 30°.

3. На железобетонных и деревянных опорах портального типа угол защиты по отношению к крайним проводам допускается не более 30°.

4. При защите ВЛ двумя тросами расстояние между ними должно быть не более пятикратного расстояния по вертикали от тросов до проводов.

2.5.66. Расстояния по вертикали между тросом и проводом ВЛ в середине пролета, без учета отклонения их ветром, по условиям защиты от грозовых перенапряжений должны быть не менее приведенных в табл. 2.5.18 и не менее расстояния по вертикали между тросом и проводом на опоре.

При промежуточных значениях длин пролетов расстояния определяются интерполяцией.

2.5.67. Крепление тросов на всех опорах ВЛ 220-500 кВ должно быть выполнено при помощи изолятора, шунтированного искровым промежутком размером 40 мм.

На каждом анкерном участке длиной до 10 км тросы должны быть заземлены в одной точке путем устройства специальных перемычек на анкерной опоре. При большой длине анкерных пролетов количество точек заземления в пролете выбирается таким, чтобы при наибольшем значении продольной электродвижущей силы, наводимой в тросе при КЗ на ВЛ, не происходил пробой искровых промежутков на ВЛ.

В случае подвески тросов на нескольких изоляторах, например для плавки гололеда на тросах или для связи, размер искрового промежутка должен быть скоординирован с электрической прочностью гирлянды, на которой подвешен трос.

На подходах ВЛ 220-330 кВ к подстанциям на длине 2-3 км и на подходе ВЛ 500 кВ на длине не менее 5 км, если тросы не используются для емкостного отбора, плавки гололеда или связи, их следует заземлять на каждой опоре.

На ВЛ 150 кВ и ниже, если не предусмотрена плавка гололеда на тросе, изолированное крепление троса следует выполнять только на металлических и железобетонных анкерных опорах. Если такая плавка предусмотрена, то изолированное крепление троса должно быть выполнено по всей длине ВЛ.

Таблица 2.5.18. Наименьшее расстояние между тросом и проводом в середине пролета

Длина пролета, м

Наименьшее расстояние между тросом и проводом по вертикали, м

2.5.68. На ВЛ с деревянными опорами портального типа расстояние между фазами по дереву должно быть не менее 5 м для ВЛ напряжением 220 кВ, 4,5 м для ВЛ 150 кВ, 4 м для ВЛ 110 кВ, 3 м для ВЛ 35 кВ.

В отдельных случаях для ВЛ 110-220 кВ при наличии обоснований (небольшие токи КЗ, районы со слабой грозовой деятельностью, реконструкция и т.п.), допускается уменьшение указанных расстояний до значения, рекомендованного для ВЛ напряжением на одну ступень ниже.

На одностоечных деревянных опорах допускаются следующие расстояния между фазами по дереву: 2,5 м для ВЛ 35 кВ, 0,75 м для ВЛ 3-20 кВ при условии соблюдения расстояний в пролете согласно 2.5.53.
Применение металлических траверс на деревянных опорах не рекомендуется.

Таблица 2.5.19. Наименьшее допустимое изоляционное расстояние
по воздуху от токоведущих до заземленных частей ВЛ

Расчетное условие

Наименьшее изоляционное расстояние, см, при напряжении ВЛ, кВ

Грозовые перенапряжения для изоляторов:

штыревых

подвесных

Внутренние перенапряжения

Рабочее напряжение

Обеспечение безопасного подъема на опору

2.5.69. Кабельные вставки в ВЛ при их длине менее 1,5 км должны быть защищены по обоим концам кабеля от грозовых перенапряжений трубчатыми или вентильными разрядниками. Заземляющий зажим разрядника, металлические оболочки кабеля, а также корпус кабельной муфты должны быть соединены между собой по кратчайшему пути. Заземляющий зажим разрядника должен быть соединен с заземлителем отдельным спуском.

2.5.70. На переходах ВЛ через реки, ущелья и т. п. при высоте опор более 40 м и отсутствии на опорах троса должны устанавливаться трубчатые разрядники.

2.5.71. Для ВЛ, проходящих на высоте до 1000 м над уровнем моря, изоляционные расстояния по воздуху от проводов и арматуры, находящейся под напряжением, до заземленных частей опор должны быть не менее приведенных в табл. 2.5.19.

Изоляционные расстояния по воздуху между токоведущими частями и деревянной опорой, не имеющей заземляющих спусков, допускается уменьшать на 10%, за исключением расстояний, выбираемых по условию безопасного подъема на опору.

При прохождении ВЛ в горных районах наименьшие изоляционные расстояния по рабочему напряжению и по внутренним перенапряжениям должны быть увеличены по сравнению с приведенными в табл. 2.5.19 на 1% на каждые 100 м и выше 1000 м над уровнем моря.

2.5.72. Наименьшие расстояния на опоре между проводами ВЛ в местах их пересечения между собой при транспозиции, ответвлениях, переходе с одного расположения проводов на другое должны быть не менее приведенных в табл. 2.5.20.

2.5.73. Дополнительные требования к защите от грозовых перенапряжений ВЛ при пересечении их между собой и при пересечении ими различных сооружений приведены в 2.5.122, 2.5.129, 2.5.140 и 2.5.152.

Таблица 2.5.20. Наименьшее расстояние между
фазами ВЛ на опоре

Расчетное условие

Наименьшее расстояние между фазами, см,
при напряжении ВЛ, кВ

Грозовые перенапряжения

Внутренние перенапряжения

Рабочее напряжение

2.5.74. На ВЛ должны быть заземлены:

1) опоры, имеющие грозозащитный трос или другие устройства грозоза щиты;

2) железобетонные и металлические опоры ВЛ 3-35 кВ;

3) опоры, на которых установлены силовые или измерительные трансформаторы, разъединители, предохранители или другие аппараты;

4) металлические и железобетонные опоры ВЛ 110-500 кВ без тросов и других устройств грозозащиты, если это необходимо по условиям обеспечения надежной работы релейной защиты и автоматики.

2.5.75. Сопротивления заземляющих устройств опор, указанных в 2.5.74, п. 1, должны быть не более приведенных в табл. 2.5.21.

Сопротивления заземляющих устройств опор, указанных в 2.5.74, п. 2, должны быть: для ВЛ 3-20 кВ в населенной местности, а также для всех ВЛ 35 кВ - не более приведенных в табл. 2.5.21, для ВЛ 3-20 кВ в ненаселенной местности в грунтах с удельным сопротивлением до 100 Ом·м - не более 30 Ом, а в грунтах с выше 100 Ом·м - не более 0,3 Ом.

Сопротивления заземляющих устройств опор, указанных в 2.5.74, п. 3, для ВЛ 110 кВ и выше должны быть не более приведенных в табл. 2.5.22, а для ВЛ 3-35 кВ должны выбираться в соответствии с требованиями 1.7.57 и 1.7.58.

Сопротивления заземляющих устройств опор, указанных в 2.5.74, п. 4, определяются при проектировании ВЛ.

Для ВЛ, защищенных тросами, сопротивления заземляющих устройств, выполняемых по условиям грозозащиты, должны обеспечиваться при отсоединенном тросе, а по остальным условиям - при неотсоединенном тросе.

Для опор высотой более 40 м на участках ВЛ, защищенных тросами, сопротивления заземляющих устройств, должны быть в 2 раза меньше по сравнению с приведенными в табл. 2.5.21.

Сопротивления заземляющих устройств опор ВЛ должны обеспечиваться и измеряться при токах промышленной частоты в период их наибольших значений в летнее время. Допускается производить измерение в другие периоды с корректировкой результатов путем введения сезонного коэффициента, однако не следует производить измерение в период, когда на значение сопротивления заземляющих устройств оказывает существенное влияние промерзание грунта.

Таблица 2.5.21. Наибольшее сопротивление заземляющих устройств
опор ВЛ

Удельное эквивалентное сопротивление земли , Ом·м

Наибольшее сопротивление заземляющего устройства, Ом

Более 100 до 500

Более 500 до 1000

Более 1000 до 5000

Более 5000

2.5.76. При прохождении ВЛ 110 кВ и выше в местностях с глинистыми, суглинистыми, супесчаными и тому подобными грунтами с удельным сопротивлением 500 Ом·м следует использовать арматуру железобетонных фундаментов, опор и пасынков в качестве естественных заземлителей без дополнительной укладки или в сочетании с укладкой искусственных заземлителей. В грунтах с более высоким удельным сопротивлением естественная проводимость железобетонных фундаментов не должна учитываться, а требуемое значение сопротивления заземляющего устройства должно обеспечиваться только применением искусственных заземлителей.

Значения сопротивления заземляющих устройств опор ВЛ 3-35 кВ должны обеспечиваться применением искусственных заземлителей, а естественная проводимость фундаментов, подземных частей опор и пасынков (приставок) при расчетах не должна учитываться.

2.5.77. Железобетонные фундаменты опор ВЛ могут быть использованы в качестве естественных заземлителей (исключение см. в 2.5.76 и 2.5.142) при осуществлении металлической связи между анкерными болтами и арматурой фундамента.

Наличие битумной обмазки на железобетонных опорах и фундаментах, используемых в качестве естественных заземлителей, не должно учитываться.

Измерение проводимости железобетонных фундаментов, подземных частей опор и пасынков должно производиться не ранее чем через 2 месяца после их установки.

2.5.78. Для заземления железобетонных опор в качестве заземляющих проводников следует использовать все те элементы напряженной и ненапряженной продольной арматуры стоек, которые металлически соединены между собой и могут быть присоединены к заземлителю.

Стержни арматуры, используемые для заземления, должны быть проверены на термическую стойкость при прохождении токов КЗ. За время КЗ стержни должны нагреваться не более чем на 60°С.

Оттяжки железобетонных опор должны использоваться в качестве заземляющих проводников дополнительно к арматуре. При этом свободный конец тросов оттяжек должен присоединяться к рабочей части оттяжек при помощи специального зажима.

Тросы и детали крепления изоляторов к траверсе железобетонных опор должны быть металлически соединены с заземляющим спуском или заземленной арматурой.

2.5.79. Сечение каждого из заземляющих спусков на опоре ВЛ должно быть не менее 35 мм, а для однопроволочных спусков диаметр должен быть не менее 10 мм. Допускается применение стальных оцинкованных однопроволочных спусков диаметром не менее 6 мм.

2.5.80. Заземлители ВЛ, как правило, должны находиться на глубине не менее 0,5 м, а в пахотной земле - 1 м. В случае установки опор в скальных грунтах допускается прокладка лучевых заземлителей непосредственно под разборным слоем над скальными породами при толщине слоя не менее 0,1 м. При меньшей толщине этого слоя или его отсутствии рекомендуется прокладка заземлителей по поверхности скалы с заливкой их цементным раствором.

АРМАТУРА

2.5.81. Крепление проводов к подвесным изоляторам и крепление тросов следует производить при помощи поддерживающих или натяжных зажимов. Из натяжных зажимов предпочтение следует отдавать зажимам, не требующим разрезания провода. Крепление проводов к штыревым изоляторам следует производить проволочными вязками или специальными зажимами.

2.5.82. Поддерживающие зажимы для подвески проводов могут быть глухими или с заделкой ограниченной прочности. По условию надежности рекомендуется применение глухих зажимов. Подвеску грозозащитных тросов на опорах следует осуществлять только в глухих зажимах.

На больших переходах могут применяться многороликовые подвесы и специальные зажимы.

2.5.83. Соединения проводов и тросов следует производить при помощи соединительных зажимов, сварки, а также при помощи зажимов и сварки в совокупности. В одном пролете ВЛ допускается не более одного соединения на каждый провод или трос.

В пролетах, пересекающих инженерные сооружения, перечисленные в 2.5.118-2.5.160 и 2.6.163-2.5.167, одно соединение на провод (трос) допускается: при сталеалюминиевых проводах с отношением А: С4,29 - сечением 240 мм и более, с отношением А: С1,46 - любого сечения, при стальных тросах - сечением 120 мм и более, а также при расщеплении фазы на три сталеалюминиевых провода с отношением А: С4,29 - сечением 150 мм и более.

Минимальное расстояние от соединительного зажима до зажима с ограниченной прочностью заделки должно быть не менее 25 м.

2.5.84. Прочность заделки проводов и тросов в соединительных и натяжных зажимах должна составлять не менее 90% предела прочности провода или троса.

2.5.85. Коэффициенты запаса прочности линейной арматуры, т. е. отношение минимальной разрушающей нагрузки к нормативной нагрузке, воспринимаемой арматурой, должны быть не менее 2,5 при работе ВЛ в нормальном режиме и не менее 1,7 в аварийном режиме.

На линиях с механическим напряжением в проводах, превышающим 42% предела прочности при наибольшей нагрузке, до освоения арматуры новых типов допускается уменьшение коэффициентов запаса прочности линейной арматуры в нормальном режиме до 2,3.

Коэффициенты запаса прочности крюков и штырей должны быть не менее 2,0 в нормальном режиме и не менее 1,3 в аварийном режиме.

Нагрузки, действующие на арматуру, крюки и штыри в аварийном режиме, определяются в соответствии с 2.5.89-2.5.91 и 2.5.93.

ОПОРЫ

2.5.86. Опоры ВЛ выше 1 кВ разделяются на два основных вида: анкерные опоры, полностью воспринимающие тяжение проводов и тросов в смежных с опорой пролетах, и промежуточные, которые не воспринимают тяжение проводов или воспринимают его частично. На базе анкерных опор могут выполняться концевые и транспозиционные опоры. Промежуточные и анкерные опоры могут быть прямыми и угловыми.

В зависимости от количества подвешиваемых на них цепей опоры разделяются на одноцепные, двухцепные и т. д.

Промежуточные опоры могут быть гибкой и жесткой конструкции, опоры анкерного типа должны быть жесткими. Опоры анкерного типа могут быть нормальной и облегченной конструкции.

Опоры могут выполняться свободностоящими или с оттяжками.

Проектирование опор, фундаментов и оснований должно производиться с учетом указаний, приведенных в приложении к настоящей главе.

2.5.87. Опоры должны рассчитываться на нагрузки нормальных и аварийных режимов ВЛ.

Анкерные опоры должны быть рассчитаны на разность тяжений проводов и тросов, возникающую вследствие неравенства значений приведенных пролетов по обе стороны опоры. При этом условия для расчета разности тяжений устанавливаются при разработке конструкций опор.

Двухцепные опоры во всех режимах должны быть рассчитаны на условия, когда смонтирована только одна цепь.

Опоры должны быть проверены на условия их сборки и установки, а также на условия монтажа проводов и тросов.

2.5.88. Опоры на ВЛ должны рассчитываться на следующие условия нормальных режимов:

1. Провода и тросы не оборваны и свободны от гололеда, скоростной напор ветра , температура минус 5°С.

2. Провода и тросы не оборваны и покрыты гололедом, скоростной напор ветра 0,25, температура минус 5°С (см. также 2.5.34).

Анкерные опоры и промежуточные угловые опоры должны рассчитываться также на условия низшей температуры без ветра, если тяжение проводов или тросов в этом режиме больше, чем в режиме наибольших нагрузок.

Концевые опоры должны рассчитываться также на одностороннее тяжение всех проводов и тросов (провода и тросы со стороны подстанции или пролета, смежного с большим переходом, не смонтированы).

2.5.89. Промежуточные опоры ВЛ с поддерживающими гирляндами и глухими зажимами должны рассчитываться на условные горизонтальные статические нагрузки аварийных режимов.

Расчет производится при следующих условиях:

1. Оборваны провод или провода одной фазы (при любом числе проводов на опоре); тросы не оборваны.

2. Оборван один трос; провода не оборваны.

Условные нагрузки прилагаются в местах крепления того провода или троса, при обрыве которого усилия в рассчитываемых элементах опоры получаются наибольшими.

Нагрузки от проводов и тросов следует принимать по среднеэксплуатационным условиям (в режиме без гололеда и без ветра).

В расчетах опор ВЛ с нерасщепленными фазами условные нагрузки от провода принимаются:

А. Для свободностоящих металлических опор и опор из любого материала на оттяжках с проводами сечением до 185 мм 0,5 ; сечением 205 мм и более 0,4 ;

Б. Для железобетонных свободностоящих опор с проводами сечением до 185 мм 0,3 ; сечением 205 мм и более 0,25 .

В. Для деревянных свободностоящих опор с проводами сечением до 185 мм 0,25 ; сечением 205 мм и более 0,2 , где - наибольшее нормативное тяжение провода или проводов одной фазы.

Г. Для других опор (опор из новых материалов, металлических гибких опор и т. п.) - в зависимости от гибкости рассчитываемых опор в пределах, указанных в п. А - В.

В расчетах опор ВЛ до 330 кВ с расщепленными фазами нормативная нагрузка определяется путем умножения значений, указанных в п. А - В для нерасщепленных фаз, на дополнительные коэффициенты: 0,8 при расщеплении на два провода, 0,7 - на три провода и 0,6 - на четыре провода.

В расчетах опор ВЛ 500 кВ с расщепленными фазами нормативная условная нагрузка, прилагаемая в месте крепления одной фазы, принимается равной 0,15 , но не менее 18 кН.

При применении средств, ограничивающих передачу продольной нагрузки на промежуточную опору (зажимы с ограниченной прочностью заделки, подвеска на блоках, а также другие средства), расчет следует производить на нормативные нагрузки, возникающие при использовании этих средств, но не более условных нагрузок, принимаемых при подвеске проводов в глухих зажимах.

Условная горизонтальная нагрузка от троса принимается равной 0,5 .

Для гибких опор (железобетонных и деревянных опор без оттяжек) допускается определять нормативную нагрузку от обрыва троса с учетом гибкости опор.

В расчетах допускается учитывать поддерживающее действие необорванных проводов и тросов в режиме среднегодовой температуры без гололеда и ветра. При этом нормативные условные нагрузки следует принимать как для металлических свободностоящих опор и опор из любого материала на оттяжках, а механические напряжения, возникающие в поддерживающих проводах и тросах, не должны превышать 70% предела прочности.

2.5.90. Промежуточные опоры ВЛ с креплением проводов на штиревых изоляторах при помощи проволочной вязки должны быть рассчитаны в аварийном режиме с учетом гибкости опор на обрыв одного провода, дающего наибольшие усилия в элементах опоры. Условная нормативная горизонтальная нагрузка вдоль линии от тяжения оборванного провода при расчете стойки должна приниматься равной 0,5

Подсчет ожидаемого количества N поражений молнией в год производится по формулам:

для сосредоточенных зданий и сооружений (дымовые трубы, вышки, башни)

для зданий и сооружений прямоугольной формы

где h - наибольшая высота здания или сооружения, м; S, L - соответственно ширина и длина здания или сооружения, м; n - среднегодовое число ударов молнии в 1 км земной поверхности (удельная плотность, ударов молнии в землю) в месте нахождения здания или сооружения.

Для зданий и сооружений сложной конфигурации в качестве S и L рассматриваются ширина и длина наименьшего прямоугольника, в который может быть вписано здание или сооружение в плане.

Для произвольного пункта на территории СССР удельная плотность ударов молнии в землю n определяется исходя из среднегодовой продолжительности гроз в часах следующим образом:

0 " style="margin-left:2.0pt;border-collapse:collapse;border:none">

ПРИЛОЖЕНИЕ 3

ЗОНЫ ЗАЩИТЫ МОЛНИЕОТВОДОВ

1. Одиночный стержневой молниеотвод.

Зона защиты одиночного стержневого молниеотвода высотой h представляет собой круговой конус (рис. П3.1), вершина которого находится на высоте h0

1.1. Зоны защиты одиночных стержневых молниеотводов высотой h£150 м имеют следующие габаритные размеры.

Зона A: h0 = 0,85h,

r0 = (1,1 - 0,002h)h,

rx = (1,1 - 0,002h)(h - hx/0,85).

Зона Б: h0 = 0,92h;

rx =1,5(h - hx/0,92).

Для зоны Б высота одиночного стержневого молниеотвода при известных значениях h и может быть определена по формуле

h = (rx + 1,63hx)/1,5.

Рис. П3.1. Зона защиты одиночного стержневого молниеотвода:

I - граница зоны защиты на уровне hx, 2 - то же на уровне земли

1.2. Зоны защиты одиночных стержневых молниеотводов высоток 150 < h < 600 м имеют следующие габаритные размеры.

2. Двойной стержневой молниеотвод.

2.1. Зона защиты двойного стержневого молниеотвода высотой h£150 м представлена на рис. П3.2. Торцевые области зоны защиты определяются как зоны одиночных стержневых молниеотводов, габаритные размеры которых h0, r0, rx1, rx2 определяются по формулам п. 1.1 настоящего приложения для обоих типов зон защиты.

Рис. П3.2. Зона защиты двойного стержневого молниеотвода:

1 - граница зоны защиты на уровне hx1; 2 - то же на уровне hx2,

3 -то же на уровне земли

Внутренние области зон защиты двойного стержневого молниеотвода имеют следующие габаритные размеры.

;

при 2h < L £ 4h

;

;

При расстоянии между стержневыми молниеотводами L >

при h < L £ 6h

;

;

При расстоянии между стрежневыми молниеотводами L > 6h для построения зоны Б молниеотводы следует рассматривать как одиночные.

При известных значениях hc и L (при rcx = 0) высота молниеотвода для зоны Б определяется по формуле

h = (hc + 0,14L) / l,06.

2.2. Зона защиты двух стержневых молниеотводов разной высоты h1, и h2 £ 150 м приведена на рис. П размеры торцевых областей зон защиты h01, h02, r01, r02, rx1, rx2 определяются по формулам п. 1.1, как для зон защиты обоих типов одиночного стержневого молниеотвода. Габаритные размеры внутренней области зоны защиты определяются по формулам:

;

;

где значения hc1 и hc2 вычисляются по формулам для hc п. 2.1 настоящего приложения.

Для двух молниеотводов разной высоты построение зоны А двойного стержневого молниеотвода выполняется при L £ 4hmin, а зоны Б - при L £ 6hmin. При соответствующих больших расстояниях между молниеотводами они рассматриваются как одиночные.

Рис. П3.3 Зона зашиты двух стержневых молниеотводов разной высоты. Обозначения те же, что и на рис. П3.1

3. Многократный стержневой молниеотвод.

Зона защиты многократного стержневого молниеотвода (рис. П3.4) определяется как зона защиты попарно взятых соседних стержневых молниеотводов высотой h £ 150 м (см. пп. 2.1, 2.2 настоящего приложения).

Рис. П3.4. Зона защиты (в плане) многократного стержневого молниеотвода. Обозначения те же, что и на рис. П3.1

Основным условием защищенности одного или нескольких объектов высотой hx с надежностью, соответствующей надежности зоны А и зоны Б, является выполнение неравенства rcx > 0 для всех попарно взятых молниеотводов. В противном случае построение зон защиты должно быть выполнено для одиночных или двойных стержневых молниеотводов в зависимости от выполнения условий п. 2 настоящего приложения.

4. Одиночный тросовый молниеотвод.

Зона защиты одиночного тросового молниеотвода высотой h£150 м приведена на рис. П3.5, где h - высота троса в середине пролета. С учетом стрелы провеса троса сечением 35-50 мм2 при известной высоте опор hоп и длине пролета а высота троса (в метрах) определяется:

h = hоп - 2 при а < 120 м;

h = hоп - 3 при 120 < а < 150м.

Рис. П3.5. Зона защиты одиночного тросового молниеотвода. Обозначения те же, что и на рис. П3.1

Зоны защиты одиночного тросового молниеотвода имеют следующие габаритные размеры.

Для зоны типа Б высота одиночного тросового молниеотвода при известных значениях hx и rx определяется по формуле

5. Двойной тросовый молниеотвод.

5.1. Зона защиты двойного тросового молниеотвода высотой h£150 м приведена на рис. П3.6. Размеры r0, h0, rx для зон защиты А и Б определяются по соответствующим формулам п. 4 настоящего приложения. Остальные размеры зон определяются следующим образом.

Рис. ПЗ.6. Зона защиты двойного тросового молниеотвода. Обозначения те же, 410 и на рис. П3.2

при h < L £ 2h

;

при 2h < L £ 4h

;

При расстоянии между тросовыми молниеотводами L > 4h для построения зоны А молниеотводы следует рассматривать как одиночные.

при h < L £ 6h

;

;

При расстоянии между тросовыми молниеотводами L > 6h для построения зоны Б молниеотводы следует рассматривать как одиночные. При известных значениях hc и L (при rcx = 0) высота тросового молниеотвода для зоны Б определяется по формуле

h = (hc + 0,12L)/1,06.

Рис. П3.7. Зона защиты двух тросовых молниеотводов разной высоты

5.2. Зона защиты двух тросов разной высоты h1 и h2 приведена на рис. П3.7. Значения r01, r02, h01, h02, rx1, rx2 определяются по формулам п. 4 настоящего приложения как для одиночного тросового молниеотвода. Для определения размеров rc и hс используются формулы:

;

где hc1 и hc2 вычисляются по формулам для hc П.5.1 настоящего приложения.

(РД34.21.122-87)

Настоящее пособие ставит задачей пояснить и конкретизировать основные положения РД 3421.122-87, а также ознакомить специалистов, занятых разработкой и проектированием молниезащиты различных объектов, с существующими представлениями о развитии молнии и ее параметрах, определяющих опасные воздействия на человека и материальные ценности. Приводятся примеры исполнения молниезащиты зданий и сооружений различных категорий в соответствии с требованиями РД 34.21.122-87.

1. КРАТКИЕ СВЕДЕНИЯ О РАЗРЯДАХ МОЛНИИ И ИХ ПАРАМЕТРАХ

Молния представляет собой электрический разряд длиной в несколько километров, развивающийся между грозовым облаком и землей или каким-либо наземным сооружением.

Разряд молнии начинается с развития лидера - слабо светящегося канала с током в несколько сотен ампер. По направлению движения лидера - от облака вниз или от наземного сооружения вверх - молнии разделяются на нисходящие и восходящие. Данные о нисходящих молниях накапливались продолжительное время в нескольких регионах земного шара. Сведения о восходящих молниях появились лишь в последние десятилетия, когда начались систематические наблюдения за грозопоражаемостью очень высоких сооружений, например Останкинской телевизионной башни.

Лидер нисходящей молнии возникает под действием процессов в грозовом облаке, и его появление не зависит от наличия на поверхности земли каких-либо сооружений. По мере продвижения лидера к земле с наземных объектов могут возбуждаться направленные к облаку встречные лидеры. Соприкосновение одного из них с нисходящим лидером (или касание последнего поверхности земли) определяет место удара молнии в землю или какой-либо объект.

Восходящие лидеры возбуждаются с высоких заземленных сооружений, у вершин которых электрическое поле во время грозы резко усиливается. Сам факт появления и устойчивого развития восходящего лидера определяет место поражения. На равнинной местности восходящие молнии поражают объекты высотой более 150 м, а в горных районах возбуждаются с остроконечных элементов рельефа и сооружении меньшей высоты и потому наблюдаются чаще.

Рассмотрим сначала процесс развития и параметры нисходящей молнии. После установления сквозного лидерного канала следует главная стадия разряда - быстрая нейтрализация зарядов лидера, сопровождающаяся ярким свечением и нарастанием тока до пиковых значений, варьирующихся от единиц до сотен килоампер. При этом происходит интенсивный разогрев канала (до десятков тысяч кельвин) и его ударное расширение, воспринимаемое на слух как раскат грома. Ток главной стадии состоит из одного или нескольких последовательных импульсов, наложенных на непрерывную составляющую. Большинство импульсов тока имеет отрицательную полярность. Первый импульс при общей длительности в несколько сотен микросекунд имеет длину фронта от 3 до 20 мкс; пиковое значение тока (амплитуда) варьируется в широких пределах: в 50% случаев (средний ток) превышает 30, а в 1-2% случаев 100 кА. Примерно в 70% нисходящих отрицательных молний за первым импульсом наблюдаются последующие с меньшими амплитудами и длиной фронта: средние значения соответственно 12 кА и 0,6 мкс. При этом крутизна (скорость нарастания) тока на фронте последующих импульсов выше, чем для первого импульса.

Ток непрерывной составляющей нисходящей молнии варьируется от единиц до сотен ампер и существует на протяжении всей вспышки, продолжающейся в среднем 0,2 с, а в редких случаях 1-1,5 с.

Заряд, переносимый в течение всей вспышки молнии, колеблется от единиц до сотен кулон, из которых на долю отдельных импульсов приходится 5-15, а на непрерывную составляющую 10-20 Кл.

Нисходящие молнии с положительными импульсами тока наблюдаются примерно в 10% случаев. Часть из них имеет форму, аналогичную форме отрицательных импульсов. Кроме того, зарегистрированы положительные импульсы с существенно большими параметрами: длительностью около 1000 мкс, длиной фронта около 100 мкс и переносимым зарядом в среднем 35 Кл. Для них характерны вариации амплитуд тока в очень широких пределах: при среднем токе 35 кА в 1-2% случаев возможно появление амплитуд свыше 500 кА.

Накопленные фактические данные о параметрах нисходящих молний не позволяют судить об их различиях в разных географических регионах. Поэтому для всей территории СССР их вероятностные характеристики приняты одинаковыми.

Восходящая молния развивается следующим образом. После того как восходящий лидер достиг грозового облака, начинается процесс разряда, сопровождающийся примерно в 80% случаев токами отрицательной полярности. Наблюдаются токи двух типов: первый - непрерывный безымпульсный до нескольких сотен ампер и длительностью в десятые доли секунды, переносящий заряд 2-20 Кл; второй характеризуется наложением на длительную безымпульсную составляющую коротких импульсов, амплитуда которых в среднем составляет 10-12 кА и лишь в 5 % случаев превышает 30 кА, а переносимый заряд достигает 40 Кл. Эти импульсы сходны с последующими импульсами главной стадии нисходящей отрицательной молнии.

В горной местности восходящие молнии характеризуются более длительными непрерывными токами и большими переносимыми зарядами, чем на равнине. В то же время вариации импульсных составляющих тока в горах и на равнине отличаются мало. На сегодняшний день не выявлена связь между токами восходящей молнии и высотой сооружений, с которых они возбуждаются. Поэтому параметры восходящих молний и их вариации оцениваются как одинаковые для любых географических регионов и высот объектов.

В РД 34.21.122-87 данные о параметрах токов молнии учтены в требованиях к конструкциям и размерам средств молниезащиты. Например, минимально допустимые расстояния от молниеотводов и их заземлителей до объектов I категории (пп. 2.3-2.5 *) определены из условия поражения молниеотводов нисходящими молниями с амплитудой и крутизной фронта тока в пределах соответственно 100 кА и 50 кА/мкс. Этому условию соответствует не менее 99% случаев поражения нисходящими молниями.

2. ХАРАКТЕРИСТИКИ ГРОЗОВОЙ ДЕЯТЕЛЬНОСТИ

Об интенсивности грозовой деятельности в различных географических пунктах можно судить по данным разветвленной сети метеорологических станций о повторяемости и продолжительности гроз, регистрируемых в днях и часах за год по слышимому грому в начале и конце грозы. Однако более важной и информативной характеристикой для оценки возможного числа поражений объектов молнией является плотность ударов нисходящих молний на единицу земной поверхности.

Плотность ударов молнии в землю сильно колеблется по регионам земного шара и зависит от геологических, климатических и других факторов. При общей тенденции роста этого значения от полюсов к экватору оно, например, резко сокращается в пустынях и возрастает в регионах с интенсивными процессами испарения. Особенно велико влияние рельефа в горной местности, где грозовые фронты преимущественно распространяются по узким коридорам, поэтому в пределах небольшой площади возможны резкие колебания плотности разрядов в землю.

В целом по территории земного шара плотность ударов молнии варьируется практически от нуля в приполярных областях до 20-30 разрядов на 1 км земли за год во влажных тропических зонах. Для одного и того же региона возможны вариации от года к году, поэтому для достоверной оценки плотности разрядов в землю необходимо многолетнее усреднение.

В настоящее время ограниченное количество пунктов земного шара оборудовано счетчиками молний, и для небольших территорий возможны непосредственные оценки плотности разрядов в землю. В массовых масштабах (например, для всей территории СССР) регистрация числа ударов молнии в землю пока невыполнима из-за трудоемкости и недостатка надежной аппаратуры.

Однако для географических пунктов, в которых установлены счетчики молний и ведутся метеорологические наблюдения за грозами, обнаружена корреляционная связь между плотностью разрядов в землю и повторяемостью или продолжительностью гроз, хотя каждый из перечисленных параметров подвержен разбросу от года к году или от грозы к грозе. В РД 34.21.122-87 эта корреляционная зависимость, представленная в приложении 2, распространена на всю территорию СССР и связывает чисто ударов нисходящей молнии в 1 км2 земной поверхности с конкретной продолжительностью гроз в часах. Данные метеорологических станций о продолжительности гроз усреднены за период с 1936 по 1978 г. и в виде линий, характеризующихся постоянным числом часов с грозой в год, нанесены на географическую карту СССР (рис. 3 РД 34.21.122-87); при этом продолжительность грозы для любого пункта задается в интервале между двумя ближайшими к нему линиями. Для некоторых областей СССР на базе инструментальных исследований составлены региональные карты продолжительности гроз, эти карты также рекомендованы к использованию (см. приложение 2 РД34.21.122- 87)

Таким косвенным путем (через данные о продолжительности гроз) удается ввести районирование территории СССР по плотности ударов молнии в землю.

3. КОЛИЧЕСТВО ПОРАЖЕНИЙ МОЛНИЕЙ НАЗЕМНЫХ СООРУЖЕНИЙ

Согласно требованиям табл. 1 РД 34.21.122-87 для ряда объектов ожидаемое количество поражений молнией является показателем, определяющим необходимость выполнения молниезащиты и ее надежность. Поэтому нужно располагать способом оценки этого значения еще на стадии проектирования объекта. Желательно, чтобы этот способ учитывал известные характеристики грозовой деятельности и другие сведения о молнии.

При подсчете числа поражений нисходящими молниями используется следующее представление: возвышающийся объект принимает на себя разряды, которые в его отсутствие поразили бы поверхность земли определенной площади (так называемую поверхность стягивания). Эта площадь имеет форму круга для сосредоточенного объекта (вертикальной трубы или башни) и форму прямоугольника для протяженного объекта, например, воздушной линии электропередачи. Число поражений объекта равно произведению площади стягивания на плотность разрядов молнии в месте его расположения. Например, для сосредоточенного объекта

где R0 - радиус стягивания; n - среднегодовое число ударов молнии в 1 км2 земной поверхности. Для протяженного объекта длиной l

Имеющаяся статистика поражений объектов разной высоты в местностях с разной продолжительностью гроз позволила ориентировочно определить связь между радиусом стягивания R0 и высотой объекта h. Несмотря на значительный разброс, в среднем можно принять R0 = 3h.

Приведенные соотношения положены в основу формул расчета ожидаемого количества поражений молнией сосредоточенных объектов и объектов с заданными габаритами в приложении 2 РД 34.21.122-87. Грозопоражаемость объектов ставится в прямую зависимость от плотности разрядов молнии в землю и соответственно от региональной продолжительности гроз в соответствии с данными приложения 2. Можно предположить, что вероятность поражения объекта растет, например с ростом амплитуды тока молнии, и зависит от других параметров разряда. Однако имеющаяся статистика поражений получена способами (фотографированием ударов молнии, регистрацией специальными счетчиками), не позволяющими выделить влияние других факторов, кроме интенсивности грозовой деятельности.

Оценим теперь по формулам приложения 2, как часто возможны поражения молнией объектов разных размеров и формы. Например, при средней продолжительности гроз 40-60 ч в год в сосредоточенный объект высотой 50 м (например, дымовую трубу) можно ожидать не более одного поражения за 3-4 года, а в здание высотой 20 м и размерами в плане 100х100 м (типичное по габаритам для многих видов производства) - не более одного поражения за 5 лет. Таким образом, при умеренных размерах зданий и сооружений (высоте в пределах 20-50 м, длине и ширине примерно 100 м) поражение молнией является редким событием. Для небольших строений (с габаритами примерно 10 м) ожидаемое количество поражений молнией редко превышает 0,02 за год, а это значит, что за весь срок их службы может произойти не более одного удара молнии. По этой причине согласно РД 34.21.122-87 для некоторых небольших строений (даже при низкой огнестойкости) выполнение молниезащиты вообще не предусматривается или существенно упрощается.

Для сосредоточенных объектов число поражений нисходящими молниями растет в квадратичной зависимости от высоты и в районах с умеренной продолжительностью гроз при высоте объектов около 150 м составляет один-два удара за год. С сосредоточенных объектов большей высоты возбуждаются восходящие молнии, количество которых также пропорционально квадрату высоты. Такое представление о поражаемости высоких объектов подтверждают наблюдения, проводимые на Останкинской телевизионной башне высотой 540 м: ежегодно в нее происходит около 30 ударов молнии и более 90% из них приходится на восходящие разряды, число поражений нисходящими молниями сохраняется на уровне одного-двух в год. Таким образом, для сосредоточенных объектов высотой более 150 м количество поражений нисходящими молниями мало зависит от высоты.

4. ОПАСНЫЕ ВОЗДЕЙСТВИЯ МОЛНИИ

В перечне основных терминов (приложение 1 РД 34.21.122-87) перечислены возможные виды воздействия молнии на различные наземные объекты. В настоящем параграфе сведения об опасных воздействиях молнии изложены более подробно.

Воздействия молнии принято подразделять на две основные группы:

первичные, вызванные прямым ударом молнии, и вторичные, индуцированные близкими ее разрядами или занесенные в объект протяженными металлическими коммуникациями. Опасность прямого удара и вторичных воздействий молнии для зданий и сооружений и находящихся в них людей или животных определяется, с одной стороны, параметрами разряда молнии, а с другой - технологическими и конструктивными характеристиками объекта (наличием взрыво - или пожароопасных зон, огнестойкостью строительных конструкций, видом вводимых коммуникаций, их расположением внутри объекта и т. д.). Прямой удар молнии вызывает следующие воздействия на объект: электрические, связанные с поражением людей или животных электрическим током и появлением перенапряжении на пораженных элементах. Перенапряжение пропорционально амплитуде и крутизне тока молнии, индуктивности конструкций и сопротивлению заземлителей, по которым ток молнии отводится в землю. Даже при выполнении молниезащиты прямые удары молния с большими токами и крутизной могут привести к перенапряжениям в несколько мегавольт. При отсутствии молниезащиты пути растекания тока молнии неконтролируемы и ее удар может создать опасность поражения током, опасные напряжения шага и прикосновения, перекрытия на другие объекты;

термические, связанные с резким выделением теплоты при прямом контакте канала молнии с содержимым объекта и при протекании через объект тока молнии. Выделяемая в канале молнии энергия определяется переносимым зарядом, длительностью вспышки и амплитудой тока молнии; и 95% случаев разрядов молнии эта энергия (в расчете на сопротивление 1 Ом) превышает 5,5 Дж, она на два-три порядка превышает минимальную энергию воспламенения большинства газо-, паро - и пылевоздушных смесей, используемых в промышленности. Следовательно, в таких средах контакт с каналом молнии всегда создает опасность воспламенения (а в некоторых случаях взрыва), то же относится к случаям проплавления каналом молнии корпусов взрывоопасных наружных установок. При протекании тока молнии по тонким проводникам создается опасность их расплавления и разрыва;

механические, обусловленные ударной волной, распространя­ю­щейся от канала молнии, и электродинамическими силами, действующими на проводники с токами молнии. Это воздействие может быть причиной, например, сплющивания тонких металлических трубок. Контакт с каналом молнии может вызвать резкое паро - или газообразование в некоторых материалах с последующим механическим разрушением, например, расщеплением древесины или образованием трещин в бетоне.

Вторичные проявления молнии связаны с действием на объект электромагнитного ноля близких разрядов. Обычно это поле рассматривают в виде двух составляющих: первая обусловлена перемещением зарядов в лидере и канале молнии, вторая - изменением тока молнии во времени. Эти составляющие иногда называют электростатической и электромагнитной индукцией.

Электростатическая индукция проявляется в виде перенапряжения, возникающего на металлических конструкциях объекта и зависящего от тока молнии, расстояния до места удара и сопротивления заземлителя. При отсутствии надлежащего заземлителя перенапряжение может достигать сотен киловольт и создавать опасность поражения людей и перекрытий между разными частями объекта.

Электромагнитная индукция связана с образованием в металлических контурах ЭДС, пропорциональной крутизне тока молнии и площади, охватываемой контуром. Протяженные коммуникации в современных производственных зданиях могут образовывать охватывающие большую площадь контуры, в которых возможно наведение ЭДС в несколько десятков киловольт. В местах сближения протяженных металлических конструкций, в разрывах незамкнутых контуров создается опасность перекрытий и искрений с возможным рассеянием энергии около десятых долей джоуля.

Еще одним видом опасного воздействия молнии является занос высокого потенциала по вводимым в объект коммуникациям (проводам воздушных линий электропередачи, кабелям, трубопроводам). Он представляет собой перенапряжение, возникающее на коммуникации при прямых и близких ударах молнии и распространяющееся в виде набегающей на объект волны. Опасность создается за счет возможных перекрытий с коммуникации на заземленные части объекта. Подземные коммуникации также представляют опасность, так как могут принять на себя часть растекающихся в земле токов молнии и занести их в объект.

5. КЛАССИФИКАЦИЯ ЗАЩИЩАЕМЫХ ОБЪЕКТОВ

Тяжесть последствий удара молнии зависит прежде всего от взрыво - или пожароопасности здания или сооружения при термических воздействиях молнии, а также искрениях и перекрытиях, вызванных другими видами воздействий. Например в производствах, постоянно связанных с открытым огнем, процессами горения, применением несгораемых материалов и конструкции, протекание тока молнии не представляет большой опасности. Напротив, наличие внутри объекта взрывоопасной среды создаст угрозу разрушений, человеческих жертв, больших материальных ущербов.

При таком разнообразии технологических условий предъявлять одинаковые требования к молниезащите всех объектов означало бы или вкладывать в ее выполните чрезмерные запасы, или мириться с неизбежностью значительных ущербов, вызванных молнией. Поэтому в РД 34.21.122-87 принят дифференцированный подход к выполнению молниезащиты различных объектов, в связи с чем в табл. 1 этой Инструкции здания и сооружения разделены на три категории, отличающиеся по тяжести возможных последствий поражения молнией.

К I категории отнесены производственные помещения, в которых в нормальных технологических режимах могут находиться и образовываться взрывоопасные концентрации газов, паров, пылей, волокон. Любое поражение молнией, вызывая взрыв, создает повышенную опасность разрушений и жертв не только для данного объекта, но и для близрасположенных.

Во II категорию попадают производственные здания и сооружения, в которых появление взрывоопасной концентрации происходит в результате нарушения нормального технологического режима, а также наружные установки, содержащие взрывоопасные жидкости и газы. Для этих объектов удар молнии создает опасность взрыва только при совпадении с технологической аварией или срабатыванием дыхательных или аварийных клапанов на наружных установках. Благодаря умеренной продолжительности гроз на территории СССР вероятность совпадения этих событий достаточно мала.

К III категории отнесены объекты, последствия поражения которых связаны с меньшим материальным ущербом, чем при взрывоопасной среде. Сюда входят здания и сооружения с пожароопасными помещениями или строительными конструкциями низкой огнестойкости, причем для них требования к молниезащите ужесточаются с увеличением вероятности поражения объекта (ожидаемого количества поражений молнией). Кроме того, к III категории отнесены объекты, поражение которых представляет опасность электрического воздействия на людей и животных: большие общественные здания , животноводческие строения, высокие сооружения типа труб, башен, монументов. Наконец, к III категории отнесены мелкие строения в сельской местности, где чаще всего используются сгораемые конструкции. Согласно статистическим данным на эти объекты приходится значительная доля пожаров, вызванных грозой. Из-за небольшой стоимости этих строений их молниезащита выполняется упрощенными способами, не требующими значительных материальных затрат (п. 2.30).

    Пожаловаться

Раздел 2. Канализация электроэнергии

Глава 2.5. Воздушные линии электропередачи напряжением выше 1 кВ

Климатические условия и нагрузки

2.5.38. При расчете ВЛ и их элементов должны учитываться климатические условия ветровое давление, толщина стенки гололеда, температура воздуха, степень агрессивного воздействия окружающей среды, интенсивность грозовой деятельности, пляска проводов и тросов, вибрация.

Определение расчетных условий по ветру и гололеду должно производиться на основании соответствующих карт климатического районирования территории РФ (рис.2.5.1, 2.5.2 – см. цветную вклейку) с уточнением при необходимости их параметров в сторону увеличения или уменьшения по региональным картам и материалам многолетних наблюдений гидрометеорологических станций и метеопостов за скоростью ветра, массой, размерами и видом гололедно-изморозевых отложений. В малоизученных районах* для этой цели могут организовываться специальные обследования и наблюдения.

* К малоизученным районам относятся горная местность и районы, где на 100 км трассы ВЛ для характеристики климатических условий имеется только одна репрезентативная метеорологическая станция.

Рис.2.5.1. Карта районирования территории РФ по ветровому давлению.

Рис.2.5.2. Карта районирования территории РФ по тощине стенки гололеда.

При отсутствии региональных карт значения климатических параметров уточняются путем обработки соответствующих данных многолетних наблюдений согласно методическим указаниям (МУ) по расчету климатических нагрузок на ВЛ и построению региональных карт с повторяемостью 1 раз в 25 лет.

Основой для районирования по ветровому давлению служат значения максимальных скоростей ветра с 10-минутным интервалом осреднения скоростей на высоте 10 м с повторяемостью 1 раз в 25 лет. Районирование по гололеду производится по максимальной толщине стенки отложения гололеда цилиндрической формы при плотности 0,9 г/см 3 на проводе диаметром 10 мм, расположенном на высоте 10 м над поверхностью земли, повторяемостью 1 раз в 25 лет.

Температура воздуха определяется на основании данных метеорологических станций с учетом положений строительных норм и правил и указаний настоящих Правил.

Интенсивность грозовой деятельности должна определяться по картам районирования территории РФ по числу грозовых часов в году (рис.2.5.3 – см. цветную вклейку), региональным картам с уточнением при необходимости по данным метеостанций о среднегодовой продолжительности гроз.

Рис.2.5.3. Карта районирования территории РФ по среднегодовой продолжительности гроз в часах.

Степень агрессивного воздействия окружающей среды определяется с учетом положений СНиПов и государственных стандартов, содержащих требования к применению элементов ВЛ, гл.1.9 и указаний настоящей главы.

Определение районов по частоте повторяемости и интенсивности пляски проводов и тросов должно производиться по карте районирования территории РФ (рис.2.5.4 – см. цветную вклейку) с уточнением по данным эксплуатации.

Рис.2.5.4. Карта районирования территории РФ по пляске проводов.

По частоте повторяемости и интенсивности пляски проводов и тросов территория РФ делится на районы с умеренной пляской проводов (частота повторяемости пляски 1 раз в 5 лет и менее) и с частой и интенсивной пляской проводов (частота повторяемости более 1 раза в 5 лет).

2.5.39. При определении климатических условий должно быть учтено влияние на интенсивность гололедообразования и на скорость ветра особенностей микрорельефа местности (небольшие холмы и котловины, высокие насыпи, овраги, балки и т.п.), а в горных районах – особенностей микро- и мезорельефа местности (гребни, склоны, платообразные участки, днища долин, межгорные долины и т.п.).

2.5.40. Значения максимальных ветровых давлений и толщин стенок гололеда для ВЛ определяются на высоте 10 м над поверхностью земли с повторяемостью 1 раз в 25 лет (нормативные значения).

2.5.41. Нормативное ветровое давление W 0 , соответствующее 10-минутному интервалу осреднения скорости ветра (V 0), на высоте 10 м над поверхностью земли принимается по табл.2.5.1 в соответствии с картой районирования территории России по ветровому давлению (рис.2.5.1) или по региональным картам районирования.

Таблица 2.5.1. Нормативное ветровое давление W 0 на высоте 10 м над поверхностью земли.

Полученное при обработке метеоданных нормативное ветровое давление следует округлять до ближайшего большего значения, приведенного в табл.2.5.1.

Ветровое давление W определяется по формуле, Па

Ветровое давление более 1500 Па должно округляться до ближайшего большего значения, кратного 250 Па.

Для ВЛ 110-750 кВ нормативное ветровое давление должно приниматься не менее 500 Па.

Для ВЛ, сооружаемых в труднодоступных местностях, ветровое давление рекомендуется принимать соответствующим району на один выше, чем принято для данного региона по региональным картам районирования или на основании обработки материалов многолетних наблюдений.

2.5.42. Для участков ВЛ, сооружаемых в условиях, способствующих резкому увеличению скоростей ветра (высокий берег большой реки, резко выделяющаяся над окружающей местностью возвышенность, гребневые зоны хребтов, межгорные долины, открытые для сильных ветров, прибрежная полоса морей и океанов, больших озер и водохранилищ в пределах 3-5 км), при отсутствии данных наблюдений нормативное ветровое давление следует увеличивать на 40% по сравнению с принятым для данного района. Полученные значения следует округлять до ближайшего значения, указанного в табл.2.5.1.

2.5.43. Нормативное ветровое давление при гололеде W г с повторяемостью 1 раз в 25 лет определяется по формуле 2.5.41, по скорости ветра при гололеде v г.

Скорость ветра v г принимается по региональному районированию ветровых нагрузок при гололеде или определяется по данным наблюдений согласно методическим указаниям по расчету климатических нагрузок. При отсутствии региональных карт и данных наблюдений . Для ВЛ до 20 кВ нормативное ветровое давление при гололеде должно приниматься не менее 200 Па, для ВЛ 330-750 кВ – не менее 160 Па.

Нормативные ветровые давления (скорости ветра) при гололеде округляются до ближайших следующих значений, Па (м/с): 80 (11), 120 (14), 160 (16), 200 (18), 240 (20), 280 (21), 320 (23), 360 (24).

Значения более 360 Па должны округляться до ближайшего значения, кратного 40 Па.

2.5.44. Ветровое давление на провода ВЛ определяется по высоте расположения приведенного центра тяжести всех проводов, на тросы – по высоте расположения центра тяжести тросов, на конструкции опор ВЛ – по высоте расположения средних точек зон, отсчитываемых от отметки поверхности земли в месте установки опоры. Высота каждой зоны должна быть не более 10 м.

Для различных высот расположения центра тяжести проводов, тросов, а также средних точек зон конструкции опор ВЛ ветровое давление определяется умножением его значения на коэффициент K w , принимаемый по табл.2.5.2.

Таблица 2.5.2. Изменение коэффициента K w по высоте в зависимости от типа местности .

Высота расположения приведенного центра тяжести проводов, тросов и средних точек зон конструкций опор ВЛ над поверхностью земли, м

Коэффициент K w для типов местности

Примечание. Типы местности соответствуют определениям, приведенным в 2.5.6.

Полученные значения ветрового давления должны быть округлены до целого числа. Для промежуточных высот значения коэффициентов K w определяются линейной интерполяцией.

Высота расположения приведенного центра тяжести проводов или тросов h пр для габаритного пролета определяется по формуле, м

,

где h cр – среднеарифметическое значение высоты крепления проводов к изоляторам или среднеарифметическое значение высоты крепления тросов к опоре, отсчитываемое от отметок земли в местах установки опор, м;

f – стрела провеса провода или троса в середине пролета при высшей температуре, м.

2.5.45. При расчете проводов и тросов ветер следует принимать направленным под углом 90° к оси ВЛ.

При расчете опор ветер следует принимать направленным под углом 0°, 45° и 90°к оси ВЛ, при этом для угловых опор за ось ВЛ принимается направление биссектрисы внешнего угла поворота, образованного смежными участками линии.

2.5.46. Нормативную толщину стенки гололеда b э плотностью 0,9 г/см 3 следует принимать по табл.2.5.3 в соответствии с картой районирования территории России по толщине стенки гололеда (см. рис.2.5.2) или по региональным картам районирования.

Таблица 2.5.3. Нормативная толщина стенки гололеда b э для высоты 10 м над поверхностью земли.

Полученные при обработке метеоданных нормативные толщины стенок гололеда рекомендуется округлять до ближайшего большего значения, приведенного в табл.2.5.3.

В особых районах по гололеду следует принимать толщину стенки гололеда, полученную при обработке метеоданных, округленную до 1 мм.

Для ВЛ 330-750 кВ нормативная толщина стенки гололеда должна приниматься не менее 15 мм.

Для ВЛ, сооружаемых в труднодоступных местностях, толщину стенки гололеда рекомендуется принимать соответствующей району на один выше, чем принято для данного региона по региональным картам районирования или на основании обработки метеоданных.

2.5.47. При отсутствии данных наблюдений для участков ВЛ, проходящих по плотинам и дамбам гидротехнических сооружений, вблизи прудов-охладителей, башенных градирен, брызгальных бассейнов в районах с низшей температурой выше минус 45 °C , I нормативную толщину стенки гололеда b э следует принимать на 5 мм больше, чем для прилегающих участков ВЛ, а для районов с низшей температурой минус 45° и ниже – на 10 мм.

2.5.48. Нормативная ветровая нагрузка при гололеде на провод (трос) определяется по 2.5.52 с учетом условной толщины стенки гололеда b у, которая принимается по региональному районированию ветровых нагрузок при гололеде или рассчитывается согласно методическим указаниям по расчету климатических нагрузок. При отсутствии региональных карт и данных наблюдений b у =b э.

2.5.49. Толщина стенки гололеда (b э, b у) на проводах ВЛ определяется на высоте расположения приведенного центра тяжести всех проводов, на тросах – на высоте расположения центра тяжести тросов. Высота приведенного центра тяжести проводов и тросов определяется в соответствии с 2.5.44.

Толщина стенки гололеда на проводах (тросах) при высоте расположения приведенного их центра тяжести более 25 м определяется умножением ее значения на коэффициенты K i и K d , принимаемые по табл.2.5.4. При этом исходную толщину стенки гололеда (для высоты 10 м и диаметра 10 мм) следует принимать без увеличения, предусмотренного 2.5.47. Полученные значения толщины стенки гололеда округляются до 1 мм.

Таблица 2.5.4. Коэффициенты K i и K d , учитывающие изменение толщины стенки гололеда.

Примечание. Для промежуточных высот и диаметров значения коэффициентов K i и K d определяются линейной интерполяцией.

При высоте расположения приведенного центра тяжести проводов или тросов до 25 м поправки на толщину стенки гололеда на проводах и тросах в зависимости от высоты и диаметра проводов и тросов не вводятся.

2.5.50. Для участков ВЛ, сооружаемых в горных районах по орографически защищенным извилистым и узким склоновым долинам и ущельям, независимо от высот местности над уровнем моря, нормативную толщину стенки гололеда b э рекомендуется принимать не более 15 мм. При этом не следует учитывать коэффициент K i .

2.5.51. Температуры воздуха – среднегодовая, низшая, которая принимается за абсолютно минимальную, высшая, которая принимается за абсолютно максимальную, – определяются по строительным нормам и правилам и по данным наблюдений с округлением до значений, кратных пяти.

Температуру воздуха при нормативном ветровом давлении W 0 следует принимать равной минус 5 °C, за исключением районов со среднегодовой температурой минус 5 °C и ниже, для которых ее следует принимать равной минус 10 °C.

Температуру воздуха при гололеде для территории с высотными отметками местности до 1000 м над уровнем моря следует принимать равной минус 5 °C, при этом для районов со среднегодовой температурой минус 5°C и ниже температуру воздуха при гололеде следует принимать равной минус 10 °C. Для горных районов с высотными отметками выше 1000 м и до 2000 м температуру следует принимать равной минус 10 °C, более 2000 м – минус 15 °C. В районах, где при гололеде наблюдается температура ниже минус 15 °C, ее следует принимать по фактическим данным.

w н, действующая перпендикулярно проводу (тросу), для каждого рассчитываемого условия определяется по формуле

где α w – коэффициент, учитывающий неравномерность ветрового давления по пролету ВЛ, принимаемый равным:

Промежуточные значения α w определяются линейной интерполяцией;

K l – коэффициент, учитывающий влияние длины пролета на ветровую нагрузку, равный 1,2 при длине пролета до 50 м, 1,1 – при 100 м, 1,05 – при 150 м, 1,0 – при 250 м и более (промежуточные значения K l определяются интерполяцией);

K w – коэффициент, учитывающий изменение ветрового давления по высоте в зависимости от типа местности, определяемый по табл.2.5.2;

C x – коэффициент лобового сопротивления, принимаемый равным: 1,1 – для проводов и тросов, свободных от гололеда, диаметром 20 мм и более; 1,2 – для всех проводов и тросов, покрытых гололедом, и для всех проводов и тросов, свободных от гололеда, диаметром менее 20 мм;

W – нормативное ветровое давление, Па, в рассматриваемом режиме:

W=W 0 – определяется по табл.2.5.1 в зависимости от ветрового района;

W=W г – определяется по 2.5.43;

F – площадь продольного диаметрального сечения провода, м 2 (при гололеде с учетом условной толщины стенки гололеда b у);

φ – угол между направлением ветра и осью ВЛ.

Площадь продольного диаметрального сечения провода (троса) F определяется по формуле, м 2

,

где d – диаметр провода, мм;

K i и K d – коэффициенты, учитывающие изменение толщины стенки гололеда по высоте и в зависимости от диаметра провода и определяемые по табл.2.5.4;

b у – условная толщина стенки гололеда, мм, принимается согласно 2.5.48;

l – длина ветрового пролета, м.

2.5.53. Нормативная линейная гололедная нагрузка на 1 м провода и трос P г н определяется по формуле, Н/м

где K i и K d – коэффициенты, учитывающие изменение толщины стенки гололеда по высоте и в зависимости от диаметра провода и принимаемые по табл.2.5.4;

b э – толщина стенки гололеда, мм, по 2.5.46;

d – диаметр провода, мм;

ρ – плотность льда, принимаемая равной 0,9 г/см 3 ;

g – ускорение свободного падения, принимаемое равным 9,8 м/с 2 .

w н при механическом расчете проводов и тросов по методу допускаемых напряжений определяется по формуле, Н

,

где P w н – нормативная ветровая нагрузка по 2.5.52;

Υ nw – коэффициент надежности по ответственности, принимаемый равным: 1,0 - для ВЛ до 220 кВ; 1,1 - для ВЛ 330-750 кВ и ВЛ, сооружаемых на двухцепных и многоцепных опорах независимо от напряжения, а также для отдельных особо ответственных одноцепных ВЛ до 220 кВ при наличии обоснования;

Υ p – региональный коэффициент, принимаемый от 1 до 1,3. Значение коэффициента принимается на основании опыта эксплуатации и указывается в задании на проектирование ВЛ;

Υ f – коэффициент надежности по ветровой нагрузке, равный 1,1.

2.5.55. Расчетная линейная гололедная нагрузка на 1 м провода (троса) P г.п при механическом расчете проводов и тросов по методу допускаемых напряжений определяется по формуле, Н/м

,

где P г н – нормативная линейная гололедная нагрузка, принимаемая по 2.5.53;

Υ nw – коэффициент надежности по ответственности, принимаемый равным: 1,0 – для ВЛ до 220 кВ; 1,3 – для ВЛ 330-750 кВ и ВЛ, сооружаемых на двухцепных и многоцепных опорах независимо от напряжения, а также для отдельных особо ответственных одноцепных ВЛ до 220 кВ при наличии обоснования;

Υ p – региональный коэффициент, принимаемый равным от 1 до 1,5. Значение коэффициента принимается на основании опыта эксплуатации и указывается в задании на проектирование ВЛ;

Υ f – коэффициент надежности по гололедной нагрузке, равный 1,3 для районов по гололеду I и II; 1,6 - для районов по гололеду III и выше;

Υ d – коэффициент условий работы, равный 0,5.

2.5.56. При расчете приближений токоведущих частей к сооружениям, насаждениям и элементам опор расчетная ветровая нагрузка на провода (тросы) определяется по 2.5.54.

2.5.57. При определении расстояний от проводов до поверхности земли и до пересекаемых объектов и насаждений расчетная линейная гололедная нагрузка на провода принимается по 2.5.55.

2.5.58. Нормативная ветровая нагрузка на конструкцию опоры определяется как сумма средней и пульсационной составляющих.

2.5.59. Нормативная средняя составляющая ветровой нагрузки на опору Q c н определяется по формуле, Н

,

где K w – принимается по 2.5.44; W – принимается по 2.5.52; C x – аэродинамический коэффициент, определяемый в зависимости от вида конструкции, согласно строительным нормам и правилам;

A – площадь проекции, ограниченная контуром конструкции, ее части или элемента с наветренной стороны на плоскость перпендикулярно ветровому потоку, вычисленная по наружному габариту, м 2 .

Для конструкций опор из стального проката, покрытых гололедом, при определении A учитывается обледенение конструкции с толщиной стенки гололеда b у при высоте опор более 50 м, а также для районов по гололеду V и выше независимо от высоты опор.

Для железобетонных и деревянных опор, а также стальных опор с элементами из труб обледенение конструкций при определении нагрузки Q c н не учитывается.

2.5.60. Нормативная пульсационная составляющая ветровой нагрузки* Q п н для опор высотой до 50 м принимается:

для свободностоящих одностоечных стальных опор:

для свободностоящих портальных стальных опор:

для свободностоящих железобетонных опор (портальных и одностоечных) на центрифугированных стойках:

для свободностоящих одностоечных железобетонных опор ВЛ до 35 кВ:

для стальных и железобетонных опор с оттяжками при шарнирном креплении к фундаментам:

Нормативное значение пульсационной составляющей ветровой нагрузки для свободностоящих опор высотой более 50 м, а также для других типов опор, не перечисленных выше, независимо от их высоты определяется в соответствии со строительными нормами и правилами на нагрузки и воздействия.

В расчетах деревянных опор пульсационная составляющая ветровой нагрузки не учитывается.

2.5.61. Нормативная гололедная нагрузка на конструкции металлических опор J н определяется по формуле, Н

,

где – принимаются согласно 2.5.53;

– коэффициент, учитывающий отношение площади поверхности элемента, подверженной обледенению, к полной поверхности элемента и принимаемый равным:

0,6 – для районов по гололеду до IV при высоте опор более 50 м и для районов по гололеду V и выше, независимо от высоты опор;

A 0 – площадь общей поверхности элемента, м 2 .

Для районов по гололеду до IV при высоте опор менее 50 м гололедные отложения на опорах не учитываются.

Для железобетонных и деревянных опор, а также стальных опор с элементами из труб гололедные отложения не учитываются.

2.5.62. Расчетная ветровая нагрузка на провода (тросы), воспринимаемая опорами, определяется по формуле, Н

,

– принимается согласно 2.5.54;

– коэффициент надежности по ветровой нагрузке, равный для проводов (тросов), покрытых гололедом и свободных от гололеда:

, Н, определяется по формуле

,

где Q н c – нормативная средняя составляющая ветровой нагрузки, принимаемая по 2.5.59;

Q н п – нормативная пульсационная составляющая ветровой нагрузки, принимаемая по 2.5.60;

Υ nw , Υ

Υ f – коэффициент надежности по ветровой нагрузке, равный:

1,3 – при расчете по первой группе предельных состояний;

1,1 – при расчете по второй группе предельных состояний.

и, Н, определяется по формуле

где Υ nw , Υ p – принимаются согласно 2.5.54;

K w принимается согласно 2.5.44;