Ликвидация бизнеса. Приказы. Оборудование для бизнеса. Бухгалтерия и кадры
Поиск по сайту

Темп прироста определяется как. Средние показатели в рядах динамики

Казалось бы, чем могут отличаться темпы роста и прироста, ведь это однокоренные слова, которые, вероятнее всего, обозначают одно и то же явление? Но, как бы ни могло показаться на первый взгляд, это два экономических показателя, которые, хотя и связаны между собой, все же имеют разное назначение и метод определения. Чтобы понять, в чем их отличительные особенности, необходимо ознакомиться с их экономической сущностью.

Определение

Темп роста призван показать, сколько процентов составляет один показатель от другого, то есть с его помощью можно сравнить исследуемый показатель с базисным или предыдущим значением. Если полученное значение меньше 100%, то наблюдается темп уменьшения исследуемого показателя в соотношении с базисным или предыдущим.

Темп прироста показывает, на сколько процентов увеличился или уменьшился тот либо иной показатель по сравнению с базисным или предыдущим значением. Если полученный результат имеет отрицательное значение, то наблюдается не темп прироста, а темп снижения анализируемого показателя по сравнению с базисным или предыдущим значением.

Сравнение

Самое главное различие заключается в их методе расчета, поскольку для них используются неодинаковые формулы. Так, чтобы рассчитать темп роста, необходимо найти отношение исследуемого значения к предыдущему или базисному, а затем умножить его на 100%, поскольку этот показатель измеряется в процентах. И тогда вывод будет звучать следующим образом: показатель А по сравнению с показателем Б составил Х %.

Чтобы рассчитать темп прироста, необходимо использовать ту же самую формулу, только вычесть из нее 100%. Кроме того, формула будет выглядеть проще, если из темпа роста вычесть 100%. В этом случае можно узнать, на сколько именно процентов изменился исследуемый показатель. Вывод по этой формуле будет звучать следующим образом: показатель А больше показателя Б на Х %.

Выводы сайт

  1. Темп роста показывает, сколько процентов составляет один показатель от другого, а темп прироста показывает, на сколько процентов один показатель отличается от другого.
  2. Темп роста можно использовать для расчета темпа прироста, а наоборот – нельзя.
  3. Если наблюдается не темп роста, а его противоположность, то значение результата будет меньше 100%; если же наблюдается не темп прироста, а темп снижения, то значение результативного показателя будет отрицательным.

Как темп роста в процентах и соответствующий ему темп прироста. При этом с первым обычно все понятно, а вот второй нередко вызывает разные вопросы, касающиеся как трактовки полученного значения, так и самой формулы расчета. Пришла пора разобраться, чем отличаются между собой эти величины и как их нужно правильно определять.

Темп роста

Данный показатель исчисляют для того, чтобы выяснять, сколько процентов составляет одно значение ряда от другого. В роли последнего чаще всего используется предыдущая величина либо базисная, то есть та, что стоит в начале исследуемого ряда. Если результат окажется больше 100%, это означает, что наблюдается увеличение исследуемого показателя, и наоборот. Рассчитать очень просто: достаточно найти отношение значения за к значению предыдущего или базисного отрезка времени.

Темп прироста

В отличие от предыдущего этот показатель позволяет выяснить не во сколько, а на сколько изменилась исследуемая величина. Положительное значение результатов расчетов означает, что наблюдается а отрицательное - темп снижения изучаемого значения в сравнении с предыдущим или базисным периодом. Как рассчитать темп прироста? Вначале находят отношение исследуемого показателя к базисному или предыдущему, а затем из полученного результата вычитают единицу, после чего, как правило, умножают итог на 100, чтобы получить его в процентах. Этот способ используется чаще всего, однако бывает так, что вместо фактического значения анализируемого показателя известно лишь значение абсолютного прироста. Как рассчитать темп прироста в этом случае? Здесь уже нужно использовать альтернативную формулу. Второй вариант расчёта состоит в нахождении процентного отношения к тому уровню, по сравнению с которым он и был рассчитан.

Практика

Предположим, нам стало известно, что в 2010 году акционерное общество «Светлый Путь» получило прибыль в 120 000 руб., в 2011 году - 110 400 руб., а в 2012 величина дохода увеличилась по сравнению с 2011 годом на 25 000 руб. Давайте посмотрим, как рассчитать темп прироста и темп роста на основе имеющихся данных, и какой из этого можно сделать вывод.

Темп роста = 110 400 / 120 000 = 0,92 или 92%.

Вывод: В 2011 прибыль предприятия по сравнению с предыдущим годом составила 92%.

Темп прироста = 110 400 / 120 000 - 1 = -0,08, или -8%.

Это означает, что в 2011 году доходы АО «Светлый Путь» по сравнению с 2010 снизились на 8%.

2. Расчёт показателей за 2012 год.

Темп роста = (120 000 + 25 000) / 120 000 ≈ 1,2083 или 120,83%.

Это означает, что прибыль нашей компании в 2012 г. по сравнению с предыдущим, 2011 годом, составила 120,83%.

Темп прироста = 25 000 / 120 000 - 1 ≈ 0,2083 или 20,83%.

Вывод: финансовые результаты анализируемого предприятия в 2012 году оказались больше соответствующего показателя 2011 г. на 20,83%.

Заключение

После того как мы разобрались, как рассчитать темп прироста и темп роста, отметим, что на основе всего лишь одного показателя невозможно дать однозначно правильную оценку исследуемому явлению. Например, вполне может оказаться, что величина абсолютного прироста прибыли увеличивается, а развитие предприятия замедляется. Поэтому любые признаки динамики необходимо анализировать совместно, то есть комплексно.

    Часто эти два показателя путают, а иногда и принимают их за одно и то же. Давайте разберемся.

    Формула (темпа роста) выглядит следующим образом:

    Темп роста = (Текущее значение / Предыдущее значение) * 100%.

    А вот для того, чтобы определить темп прироста, нужно:

    Темп прироста = (Темп роста - 1) * 100%

    Темп прироста можно найти и так: из полученного результата (темпа роста) отнимаем 100 % (положительное значение будет говорить о приросте, отрицательное - об убыли).

    Итак, темп роста показывает, как увеличивается (растет) показатель в рассматриваемом периоде, а именно во сколько раз он изменяется (возможны три варианта: увеличивается, снижается или же остается на прежнем уровне) по сравнению с предыдущим значением.

    А вот темп прироста нам уже показывает то, на сколько показатель в текущем периоде отличается от показателя в предыдущем периоде (при этом показатель может быть как положительным, так и отрицательным: прирост или же убыль).

    За октябрь 2014 года в восточном региона продажи составили 300000, а за ноябрь этого же года - уже 600000.

    Темп роста составил сразу 200 %: (600000/300000) х 100%.

    Темп прироста за ноябрь месяц в жтом регионе составил 100 % (200 100).

    темп роста = значение отчетного года / значение базового (предыдущего) года * 100%

    темп прироста = (значение базового (предыдущего) года - значение отчетного года) /значение отчетного года *100%

    1. Высчитать разницу между двумя сравниваемыми периодами (назовем их первый и второй)
    2. Эту разницу разделить на исходное число (первый период) и умножить то, что получилось на 100.

    Если результатом стало отрицательное число, то это говорит о процентном снижении.

    В статистических отчтах часто используются такие показатели, как Темп роста и Темп прироста . Они измеряются в процентах и отражают, насколько изменилось значение той или иной величины за определнный период времени.

    Темп роста

    Это показатель, который отражает, сколько процентов составляет рост статистической величины в текущем периоде по сравнению с предыдущим.

    Пусть П1 - значение прошлого периода, а П2 - значение текущего периода.

    Для расчта темпа роста используется следующая формула :

    Темп роста = (П2 / П1) * 100%.

    Здесь возможны 3 варианта:

    1) Темп роста > 100% - положительная динамика.

    2) Темп роста = 100% - изменений не произошло.

    3) Темп роста lt; 100% - отрицательная динамика.

    Темп прироста

    Это показатель, отражающий, на сколько процентов изменилась величина в текущем периоде по сравнению с предыдущим.

    Для расчта темпа прироста используется следующая формула :

    Темп прироста = (П2 / П1) * 100% - 100%.

    Если значение положительное, то можно говорить о росте значения величины (темп прироста). Если значение отрицательное - имеет место снижение (темп снижения).

    Пример

    Рассмотрим показатели, отражающие величину прибыли организации в 2015 и 2016 годах.

    Здесь в 2016 году был прирост у 1 показателя (на 10%) и снижение у 2 показателя (на 16,67%).

Темп роста - относительная скорость изменения уровня временного ряда в единицу времени.

Темп роста - отношение одного уровня временного ряда к другому, взятому за базу сравнения; выражается в процентах либо в коэффициентах роста.

Абсолютный прирост - разность двух уровней временного ряда, один из которых (исследуемый) рассматривается как текущий, другой (с которым он сравнивается) как базисный. Если сравнивают каждый текущий уровень (yt или y(t)) с непосредственно ему предшествующим (yt-1) или y(t-1)), то получают цепные абсолютные приросты. Если сравнивают уровень yt с начальным уровнем ряда (y0) или иным уровнем, принятым за базу сравнения (yt), то получают базисные абсолютные приросты. Приросты выражаются либо в абсолютных величинах, либо в процентах, в единицах.

  1. Темп прироста

Темп прироста ТП определяется как отношение абсолютного прироста данного уровня к предыдущему или базисному.

Темп прироста - отношение прироста исследуемого показателя к соответствующему уровню временного ряда, принятому за базу сравнения.

  1. Средние показатели

Абсолютное значение одного процента прироста Ai служит косвенной мерой базисного уровня. Представляет собой одну сотую часть базисного уровня, но одновременно представляет собой и отношение абсолютного прироста к соответствующему темпу роста.

Для характеристики динамики изучаемого явления за продолжительный период рассчитывают группу средних показателей динамики. Можно выделить две категории показателей в этой группе: а) средние уровни ряда; б) средние показатели изменения уровней ряда.

Средние уровни ряда рассчитываются в зависимости от вида временного ряда.

Для интервального ряда динамики абсолютных показателей средний уровень ряда рассчитывается по формуле простой средней арифметической.

Средний уровень моментного ряда с неравными интервалами рассчитывается по формуле средней арифметической взвешенной, где в качестве весов берется продолжительность промежутков времени между временными моментами изменений в уровнях динамического ряда.

Средний абсолютный прирост (средняя скорость роста) определяется как средняя арифметическая из показателей скорости роста за отдельные периоды времени.

Средний коэффициент роста рассчитывается по формуле средней геометрической из показателей коэффициентов роста за отдельные периоды.

Средний темп роста выражается в процентах:

Средний темп прироста , для расчета которого первоначально определяется средний темп роста, который затем уменьшается на 100%. Его также можно определить, если уменьшить средний коэффициент роста на единицу.

Раздел 7 индексы в статистике

7.1. Понятие статистических индексов и их роль в экономике

  1. Индивидуальные индексы

Статистическая наука имеет в своем арсенале метод, позволяющий соизмерить показатели какого-либо явления во времени и пространстве и сравнивать фактические данные с любым эталоном, в качестве которого может быть план, прогноз или какой-либо норматив. Это индексный метод, оперирующий с относительными показателями, в статистике называемыми индексами.

В практике статистики индексы наряду со средними величинами являются наиболее распространенными статистическими показателями. С их помощью характеризуется развитие национальной экономики в целом и ее отдельных отраслей, исследуется роль отдельных факторов в формировании важнейших экономических показателей, индексы используются также в международных сопоставлениях экономических показателей, определении уровня жизни, мониторинге деловой активности в экономике и т.д.

Индекс (лат. index) - это относительная величина, показывающая, во сколько раз уровень изучаемого явления в данных условиях отличается от уровня того же явления в других условиях. Различия условий могут проявляться во времени (динамические индексы), в пространстве (территориальные индексы) и в выборе в качестве базы сравнения какого-либо условного уровня.

По охвату элементов совокупности (ее объектов, единиц и их признаков) различают индексы индивидуальны е (элементарные) и сводные (сложные), которые, в свою очередь, делятся на общие и групповые.

В статистике под индексом понимается относительный показатель, который выражает соотношение величин какого-либо явления во времени, в пространстве, или сравнение фактических данных с любым эталоном.

С помощью индексов решаются следующие задачи:

    измерение динамики социально-экономического явления за два периода времени и более;

    измерение динамики среднего экономического показателя;

    измерение соотношения показателей по разным регионам;

    определение степени влияния изменений значений одних показателей на динамику других.

В международной практике индексы принято обозначать символами i и I (начальная буква латинского слова index). Буквой «i» обозначаются индивидуальные (частные) индексы, буквой «I» - общие индексы.

Помимо этого, используются определенные символы для обозначения показателей структуры индексов:

    q - количество (объем) какого-либо товара в натуральном выражении;

    р - цена единицы товара;

    z - себестоимость единицы продукции;

    t - затраты времени на производство единицы продукции;

    w - выработка продукции в стоимостном выражении на одного рабочего или в единицу времени;

    v - выработка продукции в натуральном выражении на одного рабочего или в единицу времени;

    Т - общие затраты времени (tq) или численность рабочих;

    рq - стоимость продукции или товарооборот;

    zq - издержки производства.

Знак внизу справа от символа означает период: 0 - базисный; 1 - отчетный.

Все индексы можно классифицировать по следующим признакам:

    степень охвата явления;

    база сравнения;

    вид весов (соизмерителя);

    форма построения;

    объект исследования

    состав явления;

    период исчисления.

По степени охвата явления индексы бывают индивидуальные и сводные (общие).

Индивидуальные индексы служат для характеристики изменения отдельных элементов сложного явления. Например, изменение объема производства отдельных видов продукции (телевизоров, электроэнергии и т.д.), а также цен на акции какого-либо предприятия.

Сводные (сложные) индексы служат для измерения сложного явления, составные части которого непосредственно несоизмеримы. Например, изменения физического объема продукции, включающей разноименные товары, индекса цен акций предприятий региона и т.п.

По базе сравнения индексы бывают динамические и территориальные.

Динамические индексы служат для характеристики изменения явления во времени. Например, индекс цен на продукцию в 1996 г. по сравнению с предыдущим. При исчислении динамических индексов происходит сравнение значения показателя в отчетный период со значением этого же показателя за предыдущий период, который называют базисным. Динамические индексы бывают базисные и цепные.

Территориальные индексы служат для межрегиональных сравнений. Используются, как правило, в международной статистике.

По виду весов индексы бывают с постоянными и переменными весами.

По форме построения различают агрегатные и средние индексы . Агрегатная форма является наиболее распространенной. Средние индексы являются производными от агрегатных.

По характеру объекта исследования индексы бывают производительности труда, себестоимости, физического объема продукции и т.п.

По составу явления индексы бывают постоянного (фиксированного) состава и переменного состава.

По периоду исчисления индексы бывают годовые, квартальные, месячные, недельные.

В зависимости от экономического назначения индивидуальные индексы бывают: физического объема продукции, себестоимости, цен, трудоемкости и т

    индивидуальный индекс физического объема продукции показывает, во сколько раз возрос (уменьшился) выпуск какого-либо одного товара в отчетный период по сравнению с базисным или сколько процентов составляет рост (снижение) выпуска товара; если из значения индекса, выраженного в процентах, вычесть 100%, то полученная величина покажет, на сколько возрос (уменьшился) выпуск продукции;

    индивидуальный индекс цен характеризует изменение цены одного определенного товара в текущий период по сравнению с базисным;

    индивидуальный индекс себестоимости единицы продукции показывает изменение себестоимости одного определенного вида продукции в текущий период по сравнению с базисным;

    производительность труда может быть измерена количеством продукции, производимой в единицу времени (v), или затратами рабочего времени на производство единицы продукции (t); поэтому можно построить индекс количества продукции, произведенной в единицу времени;

    индекс производительности труда по трудовым затратам;

    индивидуальный индекс стоимости продукции (товарооборота) отражает, во сколько раз изменилась стоимость какого-либо товара в текущий период по сравнению с базисным или сколько процентов составляет рост (снижение) стоимости товара.

В разных областях общественной жизни, целом ряде наук и методов исследования используются формулы показателей темпа роста и темпа прироста. Наиболее часто они применяются в экономике и статистике для выявления тенденций и результатов проведенных мероприятий. В этой статье рассматриваются ситуации, когда нужны эти формулы, их определения и порядок вычисления.

Темп роста

Вычисление темпа роста начинается с определения ряда чисел, между которыми нужно найти процентное соотношение. Контрольное число обычно сравнивают или с предыдущим показателем, или с базовым, стоящим в начале числового ряда. Итог выражается в процентах.

Формула темпа роста выглядит следующим образом:

Темп роста = Текущий показатель/Базовый показатель*100%. Если итог получается больше 100% — отмечается рост. Соответственно, меньше 100 – снижение.

Примером можно использовать вариант роста и снижения заработной платы. Сотрудник получал зарплату помесячно: в январе – 30 000, в феврале – 35 000. Темп роста составил:

Темп прироста

Формула темпа прироста позволяет вычислить процентное отражение, на сколько выросло или уменьшилось значение показателя за определенный период. В этом случае видна более конкретная цифра, позволяющая судить об эффективности работы в динамике. То есть вычисляя отношение заработной платы (или другой характеристики) по формуле темпа прироста, мы увидим, на сколько процентов изменилась данная сумма.

Существует два варианта расчета:

  1. Темп прироста = текущее значение / базовое значение * 100% — 100%:

35 000/30 000*100%-100%=16,66%;

  1. Темп прироста = (текущее значение — базовое значение) / базовое значение * 100%:

(35 000-30 000)/30 000*100%=16,66%.

Оба способа расчета являются идентичными. Отрицательный математический результат говорит об уменьшении показателя за рассматриваемый период. В нашем примере заработная плата работника в феврале стала на 16,66% выше, чем в январе.

Формулы роста и прироста: базисный, цепной и средний

Темп роста и прироста могут быть найдены несколькими способами в зависимости от целей вычислений. Выделяют формулы получения базисного, цепного и среднего темпа роста и прироста.

Базисный темп роста и прироста показывает отношение выбранного показателя ряда к показателю, принятому за основной (база вычисления). Обычно он находится в начале ряда. Формулы для вычисления следующие:

  • Темп роста (Б) = Выбранный показатель/Базовый показатель*100%;
  • Темп прироста (Б) = Выбранный показатель/Базовый показатель*100%-100.

Цепной темп роста и прироста показывает изменение показателя в динамике по цепочке. То есть отличие каждого последующего показателя по времени к предыдущему. Формулы выглядят так:

  • Темп роста (Ц) = Выбранный показатель/Предшествующий показатель*100%;
  • Темп прироста (Ц) = Выбранный показатель/Предшествующий показатель*100%-100.

Между цепным и базисным темпом роста существует взаимосвязь. Отношение итога деления текущего показателя на базисный к итогу деления предыдущего показателя на базисный равен цепному темпу роста.

Средний темп роста и прироста используется для определения усредненной величины изменения показателей за год или другой отчетный период. Для того чтобы определить данную величину, нужно определить среднюю геометрическую от всех показателей в периоде либо найти путем определения отношения конечной величины к начальной:

Нюансы вычислений

Представленные формулы очень похожи и могут вызывать затруднение и путаницу. Для этого поясним следующее:

  • темп роста показывает, сколько процентов составляет одно число от другого;
  • темп прироста показывает, на сколько процентов увеличилось или уменьшилось одно число относительно другого;
  • темп роста не может быть отрицательным, темп прироста – может;
  • темп прироста можно вычислить на базе темпа роста, обратного порядка не допускается.

В экономической практике чаще используется показатель прироста, поскольку он более наглядно отражает динамику изменений.

Вконтакте